Advertisement

A unified framework for the algebra of unsharp quantum mechanics

  • Gianpiero Cattaneo
Article

Abstract

On the basis of the concrete operations definable on the set of effect operators on a Hilbert space, an abstract algebraic structure of sum Brouwer-Zadeh (SBZ)-algebra is introduced. This structure consists of a partial sum operation and two mappings which turn out to be Kleene and Brouwer unusual orthocomplementations. The Foulis-Bennett effect algebra substructure induced by any SBZ-algebra, allows one to introduce the notions of unsharp “state” and “observable” in such a way that any “state-observable” composition is a standad probability measure (classical state). The Cattaneo-Nisticò BZ substructure induced by any SBZ-algebra permits one to distinguish, in an equational and simple way, the sharp elements from the really unsharp ones. The family of all sharp elements turns out to be a Foulis-Randall orthoalgebra. Any unsharp element can be “roughly” approximated by a pair of sharp elements representing the best sharp approximation from the bottom and from the top respectively, according to an abstract generalization introduced by Cattaneo of Pawlack “rough set” theory (a generalization of set theory, complementary to fuzzy set theory, which describes approximate knowledge with applications in computer sciences). In both the concrete examples of fuzzy sets and effect operators the “algebra” of rough elements shows a weak SBZ structure (weak effect algebra plus BZ standard poset) whose investigation is set as an interesting open problem.

Keywords

Hilbert Space Effect Operator Unify Framework Effect Algebra Orthomodular Lattice 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Berberian, S. K. (1966).Notes on Spectral Theory, Van Nostrand, Princeton, New Jersey.MATHGoogle Scholar
  2. Bub, J. (1974).The Interpretation of Quantum Mechanics, D. Reidel, Dordrecht.Google Scholar
  3. Cattaneo, G., (1976). Mathematical foundations of roughness and fuzziness inThe Fourth International Workshop on Rough Sets, Fuzzy Sets, and Machine Discovery-RSFD96, S. Tsumotoet al., eds., Tokyo Japan,241–247.Google Scholar
  4. Cattaneo G., and Marino G. (1988). Non-usual orthocomplementations on partially ordered sets and fuzziness,Fuzzy Sets and Systems 25, 107–123.MATHMathSciNetCrossRefGoogle Scholar
  5. Cattaneo, G. and Nistico, G. (1989) Brouwe posets.Fuzzy Sets and Systems 33, 165–190.MATHMathSciNetCrossRefGoogle Scholar
  6. Chellas, B. F. (1980).Modal Logic, An Introduction, Cambridge University Press, Cambridge, 1980.MATHGoogle Scholar
  7. Cignoli, R., and Monteiro, A. (1965). Boolean elements in Lukasiewicz algebras. II.Proceeding Japan Academy,41, 676–680.MATHMathSciNetCrossRefGoogle Scholar
  8. Cignoli, R. (1970).Moisil Algebras, Instituto de Matematica, Universidad Nacional del sur, Bahia Blanca, Argentina.MATHGoogle Scholar
  9. Davies, E. B., (1976).Quantum Theory of Open Systems, Academic Press, London.MATHGoogle Scholar
  10. Foulis, D. J., and Bennett M. K. (1994). Effect algebras and unsharp quantum logics,Foundations of Physics,24, 1331–1352.MathSciNetCrossRefADSGoogle Scholar
  11. Foulis, D. J., and Randall, C. (1981). Empirical Logic and tensor product, inInterpretation and Foundations of Quantum Mechanics, H. Neumann, ed., Wissenschaftsverlag, Bioliographisches Institut, Mannheim, pp. 9–20.Google Scholar
  12. Foulis, D. J., Greechie R. J., and Ruttimann G. T. (1992). Filters and supports in orthoalgebras,International Journal of Theoretical Physics,21, 789–807.MathSciNetCrossRefADSGoogle Scholar
  13. Giuntini, R. (1995). Quasilinear QMV algebras,International Journal of Theoretical Physics,34, 1397–1407.MATHMathSciNetCrossRefADSGoogle Scholar
  14. Greechie R., Gudder, S. (n.d.) Effect algebra counterexamples, manuscript (1995).Google Scholar
  15. Halmos, P. R. (1950).Measure Theory, Van Nostrand, Princeton, New Jersey.MATHGoogle Scholar
  16. Halmos, P. R. (1957).Introduction to Hilbert Space, and the Theory of Spectral Multiplicity, Chelsea, New York.MATHGoogle Scholar
  17. Halmos, P. R. (1962).Algebraic Logic, Chelsea, New York.MATHGoogle Scholar
  18. Kopka, F., and Chovanec, F. (1994). D-posets,Mathematics Slovaca,44, 21–34.MATHMathSciNetGoogle Scholar
  19. Moisil, G. C. (1940). Recherches sur les logiques non-chrysippiennes,Annals Scientifiques de l'Université de Jassy,26, 431–466.MATHMathSciNetGoogle Scholar
  20. Moisil, G. C. (1941). Notes sur les logiques nonchrysippiennes,Annals Scientifiques de l'Université de Jassy,27, 86–98.MATHMathSciNetGoogle Scholar
  21. Pawlak, Z. (1982). Rough sets.International Journal of Computer and Information Sciences,11, 341–356.MATHMathSciNetCrossRefGoogle Scholar
  22. Pawlak, Z. (1985). Rough sets and fuzzy sets.Fuzzy Sets and Systems,17, 99–102.MATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1997

Authors and Affiliations

  • Gianpiero Cattaneo
    • 1
  1. 1.Dipartimento di Scienze dell' InformazioneUniversità di MilanoItaly

Personalised recommendations