Skip to main content
Log in

Symmetry transformations with noncommutative and nonassociative parameters

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We study generalized symmetry transformations which involve nonassociative and noncommutative parameters. The structure underlying the group gradings is determined and examples are given. Graded algebras beyond Grassmann algebras are also presented. Nontrivial examples relevant for graded extensions beyond supersymmetry are given which resemble several features of quarks and might lead to a connection between the external and internal symmetries of the phenomenological models. Lie groups of transformations involving nonassociative and noncommutative parameters are obtained together with their corresponding graded Lie algebraic structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Araki, H. (1961). Connection of spin with commutation rulesJournal of Mathematical Physics,2, 267–270.

    Article  MATH  MathSciNet  Google Scholar 

  • Coleman, S., and Mandula, J. (1967). All possible symmetries of the S-matrix,Physical Review,159, 1251.

    Article  MATH  ADS  Google Scholar 

  • Drühl, K., Haag, R., and Roberts, J. E. (1970). On parastatistics,Communications in Mathematical Physics,18, 204.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Haag, R., Lopuszánski J. T., and Sohnius, M. F. (1975). All possible generators of supersymmetries of the S-matrix,Nuclear Physics B,88, 257.

    Article  MathSciNet  Google Scholar 

  • Kinoshita, T. (1958).Physical Review,110, 978–981.

    Article  MATH  ADS  Google Scholar 

  • Klein, O. (1938).Journal de Physique Radium,9, 1.

    MATH  Google Scholar 

  • Lüders, G. (1958).Zeitschrift für Naturforschung,13a, 254–260.

    Google Scholar 

  • Pauli, W. (1940).Physical Review,58, 716–722.

    Article  MATH  ADS  Google Scholar 

  • Rittenberg, V., and Wyler, D. (1978). Generalized superalgebras,Nuclear Physics,B139, 189.

    MathSciNet  ADS  Google Scholar 

  • Scheunert, M. (1979).The Theory of Lie Superalgebras, Springer-Verlag, Berlin.

    Google Scholar 

  • Scheunert, M. (1983a). Graded tensor calculus,Journal of Mathematical Physics,24, 2658.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Scheunert, M. (1983b). Casimir elements of ∈ Lie algebras,Journal of Mathematical Physics,24, 2671.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Ohnuki, Y., and Kamefuchi, S. (1968). Some general properties of para-Fermi field theory,Physical Review,170, 1279.

    Article  MATH  ADS  Google Scholar 

  • Ohnuki, Y., and Kamefuchi, S. (1969). Wave functions of identical particles.Annals of Physics,51, 337.

    Article  ADS  Google Scholar 

  • Wills-Toro, L. A. (1994a), (I,q)-graded Lie algebraic extensions of the Poincaré algebra: Grading beyond supersymmetry, University of Granada preprint UG-FT-44/94.

  • Willis-Toro, L. A. (1994b). (I. q)-graded superspace formalism for a Z2×(Z4×Z4)-graded extension of the extension of the Poincaŕe algebra, CERN-TH 7505/94.

  • Wills Toro, L. A. (1995). (I, q)-graded Lie algebraic extensions of the Poinacaré algebra, constraints onI andq, Journal of Mathematical Physics,36, 2085.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Wills-Toro, L. A. (1997). Extended superspaces beyond supersymmetry, in preparation.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wills-Toro, L.A. Symmetry transformations with noncommutative and nonassociative parameters. Int J Theor Phys 36, 2963–2997 (1997). https://doi.org/10.1007/BF02435721

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02435721

Keywords

Navigation