Advertisement

International Journal of Theoretical Physics

, Volume 36, Issue 12, pp 2953–2961 | Cite as

Analytic solutions of the Schrödinger equation for the modified quartic oscillator

  • L. Skála
  • J. Dvořák
  • V. Kapsa
Article

Abstract

No analytic solutions of the Schrödinger equation are known for the quartic anharmonic oscillator. We show in this paper that there are closely related modified quartic oscillators with the potential depending on |x| for which analytic solutions for some states exist. These results can be extended to the higher order oscillators

Keywords

Wave Function Potential Versus Physical Review Schr6dinger Equation Potential Coefficient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abramowitz, M., and Stegun, I. A., eds., (1972).Handbook of Mathematical Functions, Dover, New York, paragraph 13.1.35.Google Scholar
  2. Bender, C. M. (1982).International Journal of Quantum Chemistry,21, 93.CrossRefGoogle Scholar
  3. Bender, C. M., and Wu, T. T. (1969).Physical Review,184, 1231.MathSciNetCrossRefADSGoogle Scholar
  4. Bender, C. M., and Wu, T. T. (1971).Physical Review Letters,27, 461.CrossRefADSGoogle Scholar
  5. Bender, C. M., and Wu, T. T. (1973).Physical Review D,7, 1620.MathSciNetCrossRefADSGoogle Scholar
  6. Fernández, F. M., Mesón, A. M., and Castro, E. A. (1985).Journal of Physics A,18, 1389.MATHCrossRefGoogle Scholar
  7. Kamke, E. (1956).Differentialgleichungen. Lösungmethoden und Lösungen, Akademische Verlagsgesellschaft, Leipzig, Vol. I, paragraph 2.273, Eq. (12).Google Scholar
  8. Killingbeck, J., Jones, M. N., and Thompson, M. J., (1985).Journal of Physics A,18, 793.MathSciNetCrossRefGoogle Scholar
  9. Magyari, E. (1981).Physics Letters A,81, 116.MathSciNetCrossRefADSGoogle Scholar
  10. Richardson, J. L., and Blankenbecler, R. (1979).Physical Review D,19, 496.MathSciNetCrossRefADSGoogle Scholar
  11. Simon B. (1970).Annals of Physics,58, 76, Simon, B. (1982),Intenational Journal of Quantum Chemistry,21, 3.MathSciNetCrossRefADSGoogle Scholar
  12. Skála, L., Dvořák, J., Čížek, J., Špirko, V. (1996).Physical Review A,53, 2009.CrossRefADSGoogle Scholar
  13. Turbiner, A. V., and Ushveridze, A. G. (1987).Physics Letters A,126, 181.MathSciNetCrossRefADSGoogle Scholar
  14. Ushveridze, A. G. (1994).Quasi-Exactly Solvable Models in Quantum Mechanics, Institute of Physics Publishing, Bristol.Google Scholar
  15. Vanden Berghe, G., De Meyer, H., and Van Daele, M. (1995).International Journal of Theoretical Physics,34, 1931.MATHMathSciNetGoogle Scholar
  16. Vinette, F., and Čížek, J. (1991).Journal of Mathematical Physics,32, 3392.MathSciNetCrossRefADSGoogle Scholar
  17. Weniger, E. J. (1996).Annals of Physics,246, 133.MATHCrossRefGoogle Scholar
  18. Weniger, E. J., Čížek, J., and Vinette, F. (1991).Physics Letters A,156, 169.MathSciNetCrossRefADSGoogle Scholar
  19. Weniger, E. J., Čížek, J., and Vinette, F. (1993).Journal of Mathematical Physics,34, 571.MATHMathSciNetCrossRefADSGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1997

Authors and Affiliations

  • L. Skála
    • 1
  • J. Dvořák
    • 1
  • V. Kapsa
    • 1
  1. 1.Faculty of Mathematics and PhysicsCharles UniversityPrague 2Czech Republic

Personalised recommendations