Advertisement

Journal of Low Temperature Physics

, Volume 109, Issue 5–6, pp 709–732 | Cite as

Electrostatic charging and levitation of Helium II drops

  • Joseph J. Niemela
Articles

Abstract

Liquid Helium II drops, of diameter 1 mm or less, are charged with positive helium ions and subsequently levitated by static electric fields. Stable levitation was achieved for drops of order 100–150 micrometers in diameter. The suspended drops could be translated to arbitrary positions within the levitator using additional superimposed DC electric fields, and also could be made to oscillate stably about their average positions by means of an applied time-varying electric field. A weak corona discharge was used to produce the necessary ions for levitation. A novel superfluid film flow device, developed for the controlled deployment of large charged drops, is described. Also discussed is an adjustable electric fountain that requires only a field emission tip operating at modest potentials, and works in both Helium I and Helium II.

Keywords

Corona Discharge Electrostatic Charge Ring Electrode Film Flow Field Ionization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. D. Awschalom and K. W. Schwarz,Phys. Rev. Lett. 52, 49 (1984).CrossRefADSGoogle Scholar
  2. 2.
    G. H. Bauer, R. J. Donnelly, and W. F. Vinen,J. Low Temp. Phys. 98, 47 (1995).CrossRefADSGoogle Scholar
  3. 3.
    S. Nam, G. H. Bauer, and R. J. Donnelly,J. Korean Phys. Soc. 29, 755.Google Scholar
  4. 4.
    C. M. Muirhead, W. F. Vinen, and R. J. Donnelly,Phil. Trans. R. Soc. Lond. A 311, 433 (1984).ADSGoogle Scholar
  5. 5.
    M. A. Weilert, D. L. Whitaker, H. J. Maris, and G. M. Seidel,J. Low Temp. Phys. 98, 17 (1995).CrossRefADSGoogle Scholar
  6. 6.
    M. A. Weilert, D. L. Whitaker, H. J. Maris, and G. M. Seidel,Phys. Rev. Lett. 77, 4840 (1996).CrossRefADSGoogle Scholar
  7. 7.
    Lord Rayleigh,Phil. Mag. 14, 184 (1882).Google Scholar
  8. 8.
    C. T. R. Wilson,J. Franklin Inst. 208, 1 (1929).CrossRefGoogle Scholar
  9. 9.
    P. M. Adornato and R. A. Brown,Proc. R. Soc. Lond. A 389, 101 (1983).ADSGoogle Scholar
  10. 10.
    W. K. Rhim, M. Collender, M. T. Hyson, W. T. Simms, and D. D. Elleman,Rev. Sci. Instrum. 56, 307 (1985).CrossRefADSGoogle Scholar
  11. 11.
    R. A. Millikan,The Electron (University of Chicago Press, Chicago, 1924).Google Scholar
  12. 12.
    J. C. Maxwell,A Treatise on Electricity and Magnetism (Dover, New York, 1954), Art. 116.MATHGoogle Scholar
  13. 13.
    R. F. Wuerker, H. Sheldon, and R. V. Langmuir,J. Appl. Phys. 30, 342 (1959).CrossRefADSGoogle Scholar
  14. 14.
    J. G. Daunt and K. Mendelssohn,Nature 157, 839 (1946).ADSGoogle Scholar
  15. 15.
    E. W. Muller and T. T. Tsong,Field Ion Microscopy: Principles and Applications (American Elsevier, New York, 1969).Google Scholar
  16. 16.
    C. Mellor, Ph.D. Dissertation, University of Birmingham, UK, 1986.Google Scholar
  17. 17.
    W. F. Vinen, Private communication.Google Scholar
  18. 18.
    A. Hickson and P. V. E. McClintock,Proc. LT 12 (Kyoto) (1970).Google Scholar
  19. 19.
    A. Phillips and P. V. E. McClintock,Proc. R. Soc. Lond. A 278, 271 (1975).ADSGoogle Scholar
  20. 20.
    H. A. Pohl,Dielectrophoresis (Cambridge University Press, Cambridge, 1978).Google Scholar
  21. 21.
    R. Bowers and K. Mendelssohn,Nature 163, 870 (1949).ADSGoogle Scholar
  22. 22.
    K. Mendelssohn and G. K. White,Proc. Phys. Soc. A 63, 1328 (1950).CrossRefADSGoogle Scholar
  23. 23.
    J. Wilks,The Properties of Liquid and Solid Helium (Clarendon Press, Oxford, 1967).Google Scholar
  24. 24.
    G. R. Hebert, K. L. Chopra, and J. G. Daunt,Phys. Rev. 106, 391 (1957).CrossRefADSGoogle Scholar
  25. 25.
    R. J. Donnelly, R. A. Riegelmann, and C. F. Barenghi,A Report to the Department of Physics (University of Oregon, 1992).Google Scholar
  26. 26.
    F. Llewellyn-Jones,Ionization and Breakdown in Gases (John Wiley and Sons, New York, 1957).Google Scholar
  27. 27.
    F. A. Maxfield and R. R. Benedict,Theory of Gaseous Conduction and Electricity (McGraw-Hill, New York, 1941).Google Scholar
  28. 28.
    J. D. Cobine,Gaseous Conductors (McGraw-Hill, New York, 1941).Google Scholar
  29. 29.
    J. M. Meek and J. D. Craggs,Electrical Breakdown of Gases (Clarendon Press, Oxford, 1953).MATHGoogle Scholar
  30. 30.
    F. M. Penning,Electrical Discharges in Gases (Cleaver-Hume Press, London, 1957).Google Scholar
  31. 31.
    T. C. Papanastasiou,Applied Fluid Mechanics (Prentice-Hall, Englewood Cliffs, NJ, 1994).MATHGoogle Scholar
  32. 32.
    J. Dutton, S. C. Haydon, and F. Llewellyn-Jones,Proc. Roy. Soc. A 213, 203 (1952).ADSGoogle Scholar
  33. 33.
    R. S. Elliot,Electromagnetics (IEEE publication, New York, 1993).Google Scholar
  34. 34.
    G. Valle,Nuovo Cim. 7, 174 (1950).CrossRefGoogle Scholar
  35. 35.
    J. M. Somerville,Proc. Roy. Soc. B 65, 620 (1952).ADSGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1997

Authors and Affiliations

  • Joseph J. Niemela
    • 1
  1. 1.Department of PhysicsUniversity of OregonEugeneUSA

Personalised recommendations