Advertisement

Journal of Mathematical Sciences

, Volume 83, Issue 4, pp 485–521 | Cite as

Principles of affinity in nonlinear problems

  • N. A. Bobylev
  • M. A. Krasnosel’sky
Article

Keywords

Vector Field Periodic Solution Shift Operator Forced Oscillation Topological Index 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    P. S. Aleksandrov,Combinatorial Topology [in Russian], Gostekhizdat, Moscow (1947).Google Scholar
  2. 2.
    N. A. Bobylev, “On the theory of factor-methods of approximate solution of nonlinear problems,”Dokl. Akad. Nauk SSSR,199, No. 1, 9–12 (1971).MathSciNetGoogle Scholar
  3. 3.
    N. A. Bobylev and A. M. Dementyeva, “On an affinity theorem,” In:Applied Methods of Functional Analysis [in Russian], Voronezh State University, Voronezh (1985), pp. 29–33.Google Scholar
  4. 4.
    N. A. Bobylev, A. M. Krasnosel’sky, and M. A. Krasnosel’sky, “The stability of periodic oscillations and the possibility of their construction by the harmonic balance method,”Avtomat. Telemekh., No. 7, 179–181 (1989).Google Scholar
  5. 5.
    N. A. Bobylev and M. A. Krasnosel’sky, “The functionalization of a parameter and the affinity theorem for autonomous systems,”Differents. Uravn.,6, No. 11, 1946–1952 (1970).Google Scholar
  6. 6.
    N. A. Bobylev and M. A. Krasnosel’sky, “Operators with the continua of fixed points,”Dokl. Akad. Nauk SSSR,205, No. 5, 1015–1018 (1972).MathSciNetGoogle Scholar
  7. 7.
    N. A. Bobylev and M. A. Krasnosel’sky, “On the approximate construction of auto-oscillations in automatic control systems,”Dokl. Akad. Nauk SSSR,272, No. 2, 267–271 (1983).MathSciNetGoogle Scholar
  8. 8.
    N. A. Bobylev and M. A. Krasnosel’sky, “On the harmonic balance method in a problem on auto-oscillations,”Avtomat. Telemekh., No. 9, 44–51 (1984).Google Scholar
  9. 9.
    P. P. Zabrenko and M. A. Krasnosel’sky, “Operator iterations and fixed points,”Dokl. Akad. Nauk SSSR,196, No. 5, 1006–1009 (1971).MathSciNetGoogle Scholar
  10. 10.
    P. P. Zabrenko, M. A. Krasnosel’sky, and V. V. Strygin, “On the principles of invariance of rotation,”Izv. Vuzov. Mat.,5, 51–57 (1972).Google Scholar
  11. 11.
    P. P. Zabrenko and V. P. Tikhonov, “Defining equations and the affinity principle,”Sib. Mat. Zh.,24, No. 1, 79–88 (1983).Google Scholar
  12. 12.
    M. A. Krasnosel’sky, “Approximate calculation of eigenvalues and functions of a perturbed operator,”Dokl. Akad. Nauk Ukr. SSR, No. 3, 19–23 (1953).Google Scholar
  13. 13.
    M. A. Krasnosel’sky,Topological Methods in the Theory of Nonlinear Integral Equations [in Russian], Gostekhizdat, Moscow (1956).Google Scholar
  14. 14.
    M. A. Krasnosel’sky, “The alternative principle of existence of periodic solutions for differential equations with a retarded argument,”Dokl. Akad. Nauk SSSR,152, No. 4, 801–804 (1963).MathSciNetGoogle Scholar
  15. 15.
    M. A. Krasnosel’sky,A Shift Operator along the Trajectories of Differential Equations [in Russian], Nauka, Moscow (1966).Google Scholar
  16. 16.
    M. A. Krasnosel’sky, “On the origination of auto-oscillations from the equilibrium state,”Avtomat. Telemekh., No. 1, 182–184 (1973).Google Scholar
  17. 17.
    M. A. Krasnosel’sky, G. M. Vainikko, P. P. Zabreiko, Ya. B. Rutitsky, and V. Ya. Stetsenko,An Approximate Solution of Operator Equations [in Russian], Nauka, Moscow (1966).Google Scholar
  18. 18.
    M. A. Krasnosel’sky and P. P. Zabreiko,Geometric Methods of Nonlinear Analysis [in Russian], Nauka, Moscow (1978).Google Scholar
  19. 19.
    M. A. Krasnosel’sky and E. A. Lifschitz, “Duality principles for boundary-value problems,”Dokl. Akad. Nauk SSSR,176, No. 5, 999–1001 (1967).MathSciNetGoogle Scholar
  20. 20.
    M. A. Krasnosel’sky and E. A. Lifschitz, “Affinity principles for differential equations with unbounded operators in a Banach space,”Funk. Anal. Ego Prilozh.,2, No. 4, 58–62 (1968).Google Scholar
  21. 21.
    M. A. Krasnosel’sky and E. A. Lifschitz, “On certain general tests of existence of periodic oscillations in nonlinear systems,”Avtomat. Telemekh., No. 9, 12–15 (1973).Google Scholar
  22. 22.
    M. A. Krasnosel’sky and A. I. Perov, “On one principle of existence of bounded, periodic, and almost periodic solutions of systems of ordinary differential equations,”Dokl. Akad. Nauk SSSR,123, No. 2, 235–238 (1958).MathSciNetGoogle Scholar
  23. 23.
    M. A. Krasnosel’sky and V. V. Strygin, “On the calculation of rotation of completely continuous vector fields related to the problem on the periodic solutions of differential equations,”Dokl. Akad. Nauk SSSR,152, No. 3, 540–543 (1963).MathSciNetGoogle Scholar
  24. 24.
    M. A. Krasnosel’sky and V. V. Strygin, “The invariance principle of rotation of a vector field,”Usp. Mat. Nauk,20, No. 4, 200–203 (1965).Google Scholar
  25. 25.
    M. A. Krasnosel’sky and V. V. Strygin, “The invariance principle of rotation of a completely continuous vector field,”Funk. Anal. Ego Prilozh.,1, No. 3, 33–39 (1967).Google Scholar
  26. 26.
    B. S. Kozyakin and M. A. Krasnosel’sky, “The method of functionalization of a parameter in the problem on bifurcation points,”Dokl. Akad. Nauk SSSR,254, No. 5, 1061–1064 (1980).MathSciNetGoogle Scholar
  27. 27.
    J. Leray and Yu. Shauder, “Topology and functional equations,”Usp. Mat. Nauk,1, Nos. 3–4, 71–95 (1946).MathSciNetGoogle Scholar
  28. 28.
    E. A. Lifschitz, “On the duality principles for the problem on periodic solutions of higher-order differential equations,”Dokl. Akad. Nauk SSSR,165, No. 2, 277–280 (1965).MathSciNetGoogle Scholar
  29. 29.
    E. A. Lifschitz,The Affinity Principles and the Equivalent Operator Equations, Abstract of Candidate’s Dissertation, Voronezh State Univ. Press, Voronezh (1968).Google Scholar
  30. 30.
    V. A. Pliss,Nonlocal Problems of the Oscillations Theory [in Russian], Nauka, Moscow (1964).MATHGoogle Scholar
  31. 31.
    Yu. I. Sapronov, “On the invariance principle of rotation,”Usp. Mat. Nauk,25, No. 5, 247–248 (1970).MathSciNetMATHGoogle Scholar
  32. 32.
    V. V. Strygin,Calculation of the Rotation of Certain Special Vector Fields, Abstract of the Candidate Dissertation, Voronezh State Univ. Press, Voronezh (1964).Google Scholar
  33. 33.
    V. V. Strygin, “On the calculation of rotation of special vector fields,”Dokl. Akad. Nauk Tadzh. SSR,7, No. 3, 243–246 (1964).Google Scholar
  34. 34.
    T. A. Khurodze, “On the application of the harmonic balance method to the calculation of auto-oscillation conditions in delay systems,”Avtomat. Telemekh., No. 10, 73–82 (1991).MathSciNetGoogle Scholar
  35. 35.
    R. E. Kalman, P. L. Falb, and M. Arbib,Topics in Mathematical System Theory, McGraw-Hill, New York (1969).MATHGoogle Scholar
  36. 36.
    K. R. Schneider, “Über die Anwendung der Funktionalisierungsmethode bei nichtlinearen Eigenwert-problemen,”Math. Nachr.,89, 217–223 (1979).MathSciNetCrossRefMATHGoogle Scholar
  37. 37.
    L. A. Zadeh and C. A. Desoer,Linear System Theory: the State Space Approach, McGraw-Hill, New York (1963).MATHGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1997

Authors and Affiliations

  • N. A. Bobylev
  • M. A. Krasnosel’sky

There are no affiliations available

Personalised recommendations