Some characteristics of the proteinase—Inhibitor systems in adaptive response to strenuous exercise

  • N. I. Varakina
  • L. V. Mikhailik
  • S. S. Chabanenko
  • S. M. Zubkova
Biophysics and Biochemistry


In rats, adaptation to strenuous exercise was accompanied by phasic changes in the activities of the kallikrein-kinin system, elastase-like proteinases, and proteinase inhibitors, and total antioxidant activity in the serum, myocardium, liver, and cerebral cortex. After 30-min physical exercises, activity of the kallikrein-kinin system decreased in the serum and increased in tissue with parallel activation of elastase-like proteinases in the myocardium and cerebral cortex. After 3-h exercises the activity of the kallikrein-kinin system showed some indications of exhaustion, especially in the myocardium and cerebral cortex. Activities of elastase-like proteinases tended to normal due to activation of α1-proteinase inhibitor and normalization of total antioxidant activity.

Key Words

physical exercise stress kinin system elastase adaptation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. L. Dotsenko, V. N. Sayapin, E. A. Neshkova, et al.,Byull. Eksp. Biol. Med.,94, No. 8, 117–119 (1982).Google Scholar
  2. 2.
    S. M. Zubkova, N. I. Varakina, and L. V. Mikhailik.Vopr. Kurortol., No. 6, 9–11 (1995).Google Scholar
  3. 3.
    S. M. Zubkova and L. V. Mikhailik,Byull. Eksp. Biol. Med.,119, No. 6, 625–627 (1995).Google Scholar
  4. 4.
    G. F. Klebanov, I. V. Babenkov, Yu. O. Teselkin, et al.,Lab. Delo, No. 5, 59–62 (1988).PubMedGoogle Scholar
  5. 5.
    F. Z. Meerson,Pathogenesis and Prevention of Stress-Induced and Ischemic Damage to the Myocardium [in Russian], Moscow (1984).Google Scholar
  6. 6.
    F. Z. Meerson,Adaptation Medicine: a Concept of Long-Term Adaptation [in Russian], Moscow (1993).Google Scholar
  7. 7.
    F. V. Nartikova and T. S. Paskhina,Current Methods in Biochemistry [in Russian], Moscow (1977), pp. 188–192.Google Scholar
  8. 8.
    Yu. A. Pankov and I. Ya. Usvatova,Methods of Clinical Biochemistry of Hormones and Transmitters [in Russian], Moscow (1973).Google Scholar
  9. 9.
    R. A. Timirbulatov and B. I. Seleznev,Lab. Delo, No. 4, 209–211 (1981).PubMedGoogle Scholar
  10. 10.
    M. G. Trudolyubova,Current Methods in Biochemistry, Moscow (1977), pp. 313–316.Google Scholar
  11. 11.
    M. A. Khachaturyan, V. M. Gukasov, P. G. Komarov, et al.,Byull. Eksp. Biol. Med.,121, No. 1, 26–29 (1996).CrossRefGoogle Scholar
  12. 12.
    G. V. Dike and J. Trans,J. Biol. Chem.,253, 8870–8874 (1984).Google Scholar
  13. 13.
    H. Fritz, M. Jochum, H.-H. Disbal, et al.,Selected Topics in Clinical Enzymology, New York, London (1984), Vol. 2, pp. 305–328.Google Scholar
  14. 14.
    F. Kozin and C. G. Cochrane,Inflanmation. Basic Principles and Clinical Correlations, Eds. J. J. Gallin,et al., New York (1988), pp. 1199–1201.Google Scholar
  15. 15.
    L. Visser and E. Blout,Biochim. Biophys. Acta,263, 257–260 (1972).Google Scholar
  16. 16.
    Y. T. Wachtfogel, W. Kucich, H. L. James, et al.,J. Clin. Invest.,72, No. 11, 1672–1677 (1983).PubMedCrossRefGoogle Scholar
  17. 17.
    M. Wennmalm, G. A. Fitzerald, and A. Wennnalm,Prostaglandins,23, 675–691 (1987).CrossRefGoogle Scholar

Copyright information

© Kluwer Academic/Plenum Publishers 1999

Authors and Affiliations

  • N. I. Varakina
    • 1
  • L. V. Mikhailik
    • 1
  • S. S. Chabanenko
    • 1
  • S. M. Zubkova
    • 1
  1. 1.Russian Research Center of Rehabilitation Medicine and BalneologyMoscow

Personalised recommendations