Skip to main content
Log in

Lyapunov’s direct method in estimates of topological entropy

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

An upper estimate for the topological entropy of a dynamical system defined by a system of ODE is obtained. The estimate involves the Lyapunov functions and Losinskii’s logarithmic norm. The proof uses the known fact that the topological entropy of a mapping acting in a compact space K can be estimated via the fractal dimension of K. Bibliography: 28 titles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Adler, A. Konheim, and M. H. McAndrew, “Topological entropy,”Trans. Am. Math. Soc.,114, 309–313 (1965).

    Article  MATH  MathSciNet  Google Scholar 

  2. A. N. Kolmogorov, “A new metric invariant of transitive dynamical systems and automorphisms in Lebesgue spaces,”Dokl. Akad. Nauk SSSR,119, 861–864 (1958).

    MATH  MathSciNet  Google Scholar 

  3. Yu. Sinai, “On the concept of entropy for a dynamical system,”Dokl. Akad. Nauk SSSR,124, 768–771 (1959).

    MathSciNet  MATH  Google Scholar 

  4. E. I. Dinaburg, “The relation between topological entropy and metric entropy,”Dokl. Akad. Nauk SSSR,190, 19–22 (1970).

    MATH  MathSciNet  Google Scholar 

  5. E. I. Dinaburg, “The relation among various entropy characteristics of dynamical systems,”Izv. Akad. Nauk SSSR., Ser. Mat.,35, 324–366 (1971).

    MATH  MathSciNet  Google Scholar 

  6. L. S. Block and W. A. Coppel,Dynamics in One Dimension, Springer-Verlag, Berlin (1992).

    MATH  Google Scholar 

  7. Shinai Li, “ω-Chaos and topological entropy,”Trans. Am. Math. Soc.,339, 243–249 (1993).

    Article  Google Scholar 

  8. A. Mielke, “Topological methods for discrete dynamical systems,”GAMM-Mitteilungen,2, 19–37 (1990).

    MATH  MathSciNet  Google Scholar 

  9. M. Pollicott,Lectures on Ergodic Theory and Pesin Theory on Compact Manifolds, Cambridge University Press, Cambridge (1993).

    MATH  Google Scholar 

  10. S. Ito, “An estimate from above for the entropy and the topological entropy of aC 1-diffeomorphism,”Proc. Jpn. Acad.,46, 226–230 (1970).

    MATH  Google Scholar 

  11. A. Fathi, “Expansiveness, hyperbolicity and Hausdorff dimension,”Comm. Math. Phys.,126, 249–262 (1989).

    Article  MATH  MathSciNet  Google Scholar 

  12. Xiaoping Gu, “An upper bound for the Hausdorff dimension of hyperbolic set,”Nonlinearity,4, 927–934 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  13. A. Eden, C. Foias, and R. Temam, “Local and global Lyapunov exponents,”J. Dyn. Diff. Eq.,3, 133–177 (1991).

    Article  MATH  MathSciNet  Google Scholar 

  14. F. Ledrappier, “Some relation between dimension and Lyapunov exponents,”Commun. Math. Phys.,81, 229–238 (1981).

    Article  MATH  MathSciNet  Google Scholar 

  15. G. A. Leonov, “On estimations of Hausdorff dimension of attractors,”Vestn. LGU, Ser. 1, No. 3, 41–44 (1991).

    MATH  MathSciNet  Google Scholar 

  16. A. Douady and J. Oesterlé, “Dimension de Hausdorff des attractors,”C. R. Acad. Sci. Paris. Sér. A,290, 1135–1138 (1980).

    MATH  Google Scholar 

  17. G. A. Leonov and V. A. Boichenko, “Lyapunov’s direct method in the estimation of the Hausdorff dimension of attractors,”Acta Appl. Math.,26, 1–60 (1992).

    Article  MATH  MathSciNet  Google Scholar 

  18. A. Eden, “Local Lyapunov exponents and local estimate of Hausdorff dimension,”RAIRO Modél. Math. Anal. Numér. 23, 405–413 (1989).

    MATH  MathSciNet  Google Scholar 

  19. G. A. Leonov and S. A. Lyashko, “On Eden’s conjecture for Lorentz system,”Vestn. SPbGU., Ser. 1, No. 3, 9–15 (1993).

    Google Scholar 

  20. D. Ruelle, “Thermodynamic formalism for maps satisfying positive expansiveness and specification,”Nonlinearity,5, 1223–1236 (1992).

    Article  MATH  MathSciNet  Google Scholar 

  21. S. Ito, “On the topological entropy of a dynamical system,”Proc. Jpn. Acad.,45, 838–840 (1969).

    MATH  Google Scholar 

  22. I. Cornfeld, S. Fomin, and Yu. Sinai,Ergodic Theory, Springer-Verlag, Berlin (1982).

    MATH  Google Scholar 

  23. P. Walters,Introduction to Ergodic Theory, Springer-Verlag, Berlin (1982).

    MATH  Google Scholar 

  24. R. Temam,Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Springer-Verlag, New York (1988).

    MATH  Google Scholar 

  25. A. N. Kolmogorov and V. M. Tikhomirov, “ɛ-Entropy and ɛ-capacity of sets in functional spaces,”Usp. Mat. Nauk,14, 3–86 (1959).

    MATH  Google Scholar 

  26. A. Fathi, “Some compact invariant subsets for hyperbolic linear automorphisms of tori,”Ergod. Theor. Dynam. Syst.,8, 191–202 (1988).

    Article  MATH  MathSciNet  Google Scholar 

  27. L. Ya. Adrianova,Introduction to Linear Systems of Differential Equations, Am. Math. Soc., Providence (1995).

    MATH  Google Scholar 

  28. S. M. Lozinskii, “Estimation of error of numerical integration of ordinary differential equations. I,”Izv. Vuzov., Ser. Mat.,5, 52–90 (1958).

    MATH  Google Scholar 

Download references

Authors

Additional information

Translated fromZapiski Nauchnykh Seminarov POMI, Vol. 231, 1995, pp. 62–75.

Translated by V. A. Boichenko and G. A. Leonov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boichenko, V.A., Leonov, G.A. Lyapunov’s direct method in estimates of topological entropy. J Math Sci 91, 3370–3379 (1998). https://doi.org/10.1007/BF02434914

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02434914

Keywords

Navigation