Research in Nondestructive Evaluation

, Volume 8, Issue 1, pp 23–37 | Cite as

Elastic constants and thermal expansion of aluminum-SiC metal-matrix composites

  • M. Orrhede
  • R. Tolani
  • K. Salama


The elastic behavior and the thermal expansivity of metal-matrix composites have been investigated using ultrasonic velocity and strain gage measurements. The composites used in this study consisted of three aluminum alloys reinforced with different concentrations of SiC particles. The results show that the elastic constants increase and the coefficients of thermal expansion decrease with particle content. The results also show that the behavior of elastic constants with reinforcement can be best represented by the calculations of the upper and lower bounds of Hashin and Shtrikman. The behavior of thermal expansion, however, agrees with bounds developed by Schapery. In addition, both properties are found to be related through a model linking the strain to the elastic and thermal stresses in the composite. This relationship gives promise for the nondestructive characterization of the composites using these measurements.


Thermal Expansion Elastic Constant Bulk Modulus Ultrasonic Velocity Direction Fraction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Z. Hashin and S. Shtrikman.J. Mech. Phys. Solids 11:127–140 (1963)MATHMathSciNetCrossRefADSGoogle Scholar
  2. 2.
    J. M. Dewey.J. Appl. Phys. 18:578–581 (1947)CrossRefADSGoogle Scholar
  3. 3.
    E. H. Kerner.Proc. Phys. Soc. 69B:808–813 (1956)ADSGoogle Scholar
  4. 4.
    H. M. Ledbetter.J. Acoust. Soc. Amer. 79(2):239–248 (1986)CrossRefADSGoogle Scholar
  5. 5.
    B. Grelsson and K. Salama.Res. Nondestr. Eval. 2:83–96 (1990)CrossRefGoogle Scholar
  6. 6.
    Z. Hashin and B. W. Rosen.J. Appl. Mech. 31:223–232 (1964)Google Scholar
  7. 7.
    R. M. Christensen and F. M. Waals.J. Compos. Mat. 6:518–532 (1972)Google Scholar
  8. 8.
    P. S. Turner.J. Res. Nat. Bur. Stand. 37:237–250 (1946)Google Scholar
  9. 9.
    R. A. Schapery.J. Compos. Mat. 2:380–404 (1968)Google Scholar
  10. 10.
    A. J. Dekker,Solid State Physics, p. 33, McMillan, New York (1960)Google Scholar
  11. 11.
    V. M. Levin.Meckanika Tverdoga Tela 2:88–94 (1967); English translation inMech. Solids 2: 58–61 (1967)Google Scholar
  12. 12.
    E. P. Papadakis.J. Acoust. Soc. Amer. 40:1045–1051 (1967)CrossRefADSGoogle Scholar
  13. 13.
    P. A. Foltyn. Nondestructive Investigation of Thermal Stresses in Metal Matrix Composites Using Ultrasonic Velocity Measurements, Master's Thesis, University of Houston, Houston, TX (1992)Google Scholar
  14. 14.
    Z. Hashin.J. Appl. Mech. 29:143–150 (1962)MATHMathSciNetGoogle Scholar
  15. 15.
    J. D. Eshelby.Proc. Royal Soc. London Ser. A 241:376–396 (1957)MATHMathSciNetADSCrossRefGoogle Scholar
  16. 16.
    M. Spies and K. Salama.Res. Nondestr. Eval. 1:99–109 (1989)CrossRefGoogle Scholar
  17. 17.
    R. Truell, C. Elbaum, and B. B. Chick,Ultrasonic Methods in Solid State Physics, Academic Press, New York (1969)Google Scholar
  18. 18.
    E. Schreiber and N. Soga.J. Amer. Ceramic Soc. 49:342–342 (1966)CrossRefGoogle Scholar
  19. 19.
    T. A. Hahn and R. W. Armstrong.Int. J. Thermophys. 9:861–871 (1988)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York Inc 1996

Authors and Affiliations

  • M. Orrhede
    • 1
  • R. Tolani
    • 1
  • K. Salama
    • 1
  1. 1.Mechanical Engineering DepartmentUniversity of HoustonHoustonUSA

Personalised recommendations