Advertisement

Journal of Mathematical Sciences

, Volume 92, Issue 6, pp 4302–4315 | Cite as

A priori estimate for the second-order derivatives of solutions to the Dirichlet problem for fully nonlinear parabolic equations

  • N. M. Ivochkina
  • S. I. Prokofieva
Article

Abstract

The first initial-boundary-value problem for a uniformly parabolic and uniformly nondegenerate operator is considered. An a priori estimate for an admissible solution is established. In view of the generalized Hessian, it is possible to avoid the growth conditions which are usual in the theory of uniformly elliptic and uniformly parabolic operators. Bibliography: 19 titles.

Keywords

Elliptic Equation Parabolic Equation Dirichlet Problem Admissible Function Admissible Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Caffarelli, L. Nirenberg, and J. Spruck, “The Dirichlet problem for nonlinear second-order elliptic equations. III. Functions of the eigenvalues of the Hessian”,Acta Math.,155, No. 3-4, 261–301 (1985).MATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    N. S. Trudinges “The Dirichlet problem for the prescribed curvature equations”,Arch. Rat. Mech. Anal.,111, No. 2, 153–179 (1990).CrossRefGoogle Scholar
  3. 3.
    N. V. Krylov, “On analogues of the simplest Monge-Ampère equations”,C. R. Acad. Sci. Paris, Sér. I. Math.,318, No. 4, 321–325 (1994).MATHMathSciNetGoogle Scholar
  4. 4.
    M. V. Safonov,Boundary Value Problems for Nonlinear Second-order Elliptic and Parabolic Equations, Doctoral Dissertation [in Russian], Leningrad (1988).Google Scholar
  5. 5.
    N. V. Krylov,Second-Order Nonlinear Elliptic and Parabolic Equations [in Russian], Nauka, Moscow (1985).Google Scholar
  6. 6.
    N. S. Trudinger, “Fully nonlinear, uniformly elliptic equations under ntural structure conditions”,Trans. Amer. Math. Soc.,278, 751–769 (1983).MATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    N. M. Ivochkina and G. V. Yakunina “Estimate for the second-order derivatives of solutions of curvature-type equations”,Probl. Mat. Anal.,15, 135–144 (1996).Google Scholar
  8. 8.
    O. A. Ladyzhenskaya and N. N. Ural'tseva,Estimates of Hölder constants for bounded solutions of second-order quasilinear parabolic equations of the nondivergence form, Preprint, NE-11 81, Leningrad (1981).Google Scholar
  9. 9.
    O. A. Ladyzhenskaya and N. N. Ural'tseva,Linear and Quasilinear Equations of Elliptic Type, Moscow (1973).Google Scholar
  10. 10.
    N. M. Ivochkina, “On the Dirichlet problem for fully nonlinear parabolic equations”,Zap. Nauchn. Sem. POMI,233, 101–111 (1996).MATHGoogle Scholar
  11. 11.
    D. Gilbarg and N. Trudinger,Elliptic Partial Differential Equations of Second Order, Springer, Berlin (1977).Google Scholar
  12. 12.
    O. A. Ladyzhenskaya, V. A. Solonnikov, and N. N. Ural'tseva,Linear and Quasi-linear Equations of Parabolic Type, American Mathematical Society, Providence (1968).Google Scholar
  13. 13.
    N. M. Ivochkina, “A description of the stability cones generated by differential operators of Monge-Ampere type”,Math. USSR Sb.,50, 259–268 (1985).MATHCrossRefGoogle Scholar
  14. 14.
    N. M. Ivochkina and O. A. Ladyzhenskaya, “On the parabolic problems generated by some symmetric functions of the eigenvalues of the Hessian”,Topological Methods Nonlinear Anal.,4, No. 1, 19–29 (1994).MATHMathSciNetGoogle Scholar
  15. 15.
    N. M. Ivochkina and O. A. Ladyzhenskaya, “Flows generated by symmetric functions of the eigenvalues of the Hessian”,Zap. Nauchn. Sem. POMI,221, 127–144 (1995).MATHGoogle Scholar
  16. 16.
    N. V. Krylov,Lectures on Fully Nonlinear Second Order Elliptic Equations, Bonn (1993).Google Scholar
  17. 17.
    N. M. Ivochkina, “The Dirichlet problem for curvature equations of orderm”,Leningrad. Math. J.,2, No. 3, 631–654 (1991).MATHMathSciNetGoogle Scholar
  18. 18.
    N. M. Ivochkina, Mi Lin, and N. S. Trudinger, “The Dirichlet problem for the prescribed curvature quotient equations with general bounary values”,Geom, Anal. Calculus Variation (1996).Google Scholar
  19. 19.
    N. M. Ivochkina, S. I. Prokofieva, and G. V. Yakunina, “A class of equations of Monge-Ampere type”,Probl. Mat. Anal.,13, 89–106 (1992).MATHGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1998

Authors and Affiliations

  • N. M. Ivochkina
  • S. I. Prokofieva

There are no affiliations available

Personalised recommendations