Bulletin of Experimental Biology and Medicine

, Volume 128, Issue 5, pp 1109–1111 | Cite as

Effects of thymidine and phorbol 12-myristate 13-acetate on erythroid differentiation of K562 cells and their sensitivity to nonspecific lysis by rat splenocytes

  • A. G. Anisimov
  • I. A. Bolotnikov
  • T. O. Volkova
Biophysics and Biochemistry
  • 27 Downloads

Abstract

Induction of hemoglobin synthesis in K562 cells by thymidine (2 mM)in vitro did not significantly enhance major histocompatibility complex antigen-unrestricted lysis of splenocyte-exposed K562 cells. Inhibition of thymidine-induced hemoglobin synthesis by simultaneous incubation of cells with thymidine and phorbol 12-myristate 13-acetate (100 nM) decreased cytolytic activity of splenocytes against K562 cells. Preincubation of tumor cells with phorbol ester alone did not affect major histocompatibility complex antigen-unrestricted lysis induced by rat splenocytes but decreased the basal level of hemoglobin synthesis.

Key Words

nonspecific cytotoxicity erythroid differentiation phorbol 12-myristate 13-acetate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. G. Anisimov and I. A. Bolotnikov,Byull. Eksp. Biol. Med.,122, No. 10, 394–398 (1996).Google Scholar
  2. 2.
    A. G. Anisimov and I. A. Bolotnikov,Tsitologiya,39, No. 9, 822–828 (1997).Google Scholar
  3. 3.
    Yu. L. Volyanskaya, T. Yu. Kolotova, and N. V. Vasil'ev,Usp. Sovr. Biol.,114, No. 6, 679–692 (1994).Google Scholar
  4. 4.
    G. G. Gurzadyan and D. Shul'te-Frolinde.Biofizika,41, No. 5, 1033–1037 (1996).Google Scholar
  5. 5.
    S. D. Ivanov,Postradiation Reactions of DNA Nucleotides in Blood Leukocytes. Detection, Principles, and Importance for Diagnostics and Prognosis, Abstract of Doct. Biol. Sci. Dissertation, St. Petersburg (1992).Google Scholar
  6. 6.
    L. C. Andersson, M. Jokinen, and C. G. Gahmberg,Nature,278, No. 5702, 364–365 (1979).PubMedCrossRefGoogle Scholar
  7. 7.
    L. C. Andersson, K. Nilsson, and C. G. Gahmberg,Int. J. Cancer,23, No. 2, 143–147 (1979).PubMedGoogle Scholar
  8. 8.
    R. E. Corin, H. C. Haspel, A. M. Peretz,et al., Cancer Res.,46, No. 3, 1136–1141 (1986).PubMedGoogle Scholar
  9. 9.
    M. C. Dokhelar, D. Garson, H. Wakasugi,et al., Cell. Immunol.,87, No. 2, 389–399 (1984).PubMedCrossRefGoogle Scholar
  10. 10.
    R. Galladrini, R. DeMaria, M. Piccoli,et al., J. Immunol.,153, No. 10, 4399–4407 (1993).Google Scholar
  11. 11.
    C. G. Gahmberg, M. Jokinen, and L. C. Andersson,J. Biol. Chem.,254, No. 15, 7442–7448 (1979).PubMedGoogle Scholar
  12. 12.
    P. Jeanesson, C. Trentesaux, B. Gerard,et al., Cancer Res.,50, No. 4, 1231–1236 (1990).Google Scholar
  13. 13.
    C. Luisi-DeLuca, T. Mitchell, D. Spriggs, and D. W. Kufe,J. Clin. Invest.,74, No. 3, 821–827 (1984).PubMedCrossRefGoogle Scholar
  14. 14.
    D. J. McConkey, M. Jondal, and S. Orrenius,Semin. Immunol.,4, No. 6, 371–377 (1992).PubMedGoogle Scholar
  15. 15.
    D. Rosson and T. G. O'Brien,Biochem. Biophys. Res. Com.,210, No. 1, 90–97 (1995).PubMedCrossRefGoogle Scholar
  16. 16.
    T. R. Rutherford, J. B. Clegg, and D. J. Weatherall,Nature,280, No. 5718, 164–165 (1979).PubMedCrossRefGoogle Scholar
  17. 17.
    H. Sawai, T. Okazaki, Y. Takeda,et al., J. Biol. Chem.,272, No. 4, 2452–2458 (1997).PubMedCrossRefGoogle Scholar
  18. 18.
    M. Sugiura, R. Fram, D. Munroe, and D. Kufe,Dev. Biol.,104, No. 2, 484–488 (1984).PubMedCrossRefGoogle Scholar

Copyright information

© Kluwer Academic/Plenum Publishers 2000

Authors and Affiliations

  • A. G. Anisimov
    • 1
  • I. A. Bolotnikov
    • 1
  • T. O. Volkova
    • 1
  1. 1.Department of BiochemistryPetrozavodsk State UniversityPetrozavodskUSSR

Personalised recommendations