Advertisement

Bulletin of Experimental Biology and Medicine

, Volume 127, Issue 3, pp 236–239 | Cite as

Corticosterone and lipid peroxidation in rats after two exposures to cold

  • N. G. Kolosova
  • G. M. Petrakova
  • M. A. Gilinskii
Physiology

Abstract

The relationships between serum corticosterone content, intensity of lipid peroxidation (LPO) and the concentration of tocopherol in tissues, and the transmembrane potential in thymocytes were studied in rats exposed to two consecutive coolings. Both exposures increased serum corticosterone. The first exposure activated LPO in the serum, while the second stimulated LPO in thymocytes. The second cooling lowered body temperature to a lesser extent than the first one. Body temperature did not depend on the content of LPO products or corticosterone, but negatively correlated with the content of tocopherol in the brain hemispheres and adrenal glands. The rats exhibiting high-level thermoregulation after the first exposure to cold showed a higher thymocyte transmembrane potential after the second cooling. The second exposure potentiated the negative relationship between the brain and serum content of corticosterone and LPO products, which indicates that the content of LPO products cannot be used as an index of stress intensity.

Key Words

cold stress corticosterone lipid peroxidation tocopherol 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Z. Z. Gizatullina, O. A. Sukacheva, and I. A. Gagel'gans,Biokhimiya,61, No. 3, 445–450 (1996).Google Scholar
  2. 2.
    N. V. Gulyaeva and M. Yu Stepanichev,Zh. Vyssch. Nervn. Deyat.,27, No. 4, 462–469 (1997).Google Scholar
  3. 3.
    G. E. Dobretsov,Fluorescent Probes in Cell, Membrane, and Lipoprotein Research [in Russian], Moscow (1989).Google Scholar
  4. 4.
    V. E. Kagan, O. N. Orlov, and L. L. Prilipko,Advances in Science and Technology, Ser. Biophysics [in Russian],18, (1986).Google Scholar
  5. 5.
    N. G. Kolosova, A. R. Kolpakov, and L. E. Panin,Vopr. Med. Khim., No. 6, 31–37 (1995).Google Scholar
  6. 6.
    N. G. Kolosova and V. Yu. Kulikov,Byull. Sib. Divis. Akad. Med. Nauk SSSR, No. 4, 93–93 (1989).Google Scholar
  7. 7.
    Yu. P. Shorin, V. G. Selyatitskaya, N. G. Kolosova, and V. Yu. Kulikov,Byull. Eksp. Biol. Med.,99, No. 6, 69–71 (1985).CrossRefGoogle Scholar
  8. 8.
    Yu. P. Shorin, V. G. Selyatitskaya, N. G. Kolosova and V. Yu. Kulikov,Fiziol. Zh.,32, No. 2, 184–188 (1986).PubMedGoogle Scholar
  9. 9.
    Y. Goodman, A. J. Bruce, B. Cheng, and M. P. Mattson,J. Neurochem.,66, No. 5, 1836–1844 (1996).PubMedCrossRefGoogle Scholar
  10. 10.
    N. G. Kolosova, A. R. Kolpakov, I. G. Shabalina, and L. E. Panin,Membr. Cell Biol.,9, No. 6, 641–648 (1996).Google Scholar
  11. 11.
    P. Kovacs, I. Juranek, T. Stankovicova, and P. Svec,Pharmazie,51, No. 1, 51–53 (1996).PubMedGoogle Scholar
  12. 12.
    T. Ohkuwa, Y. Sato, M. Naoi,Acta Physiol. Scand.,159, No. 3, 237–244 (1997).PubMedCrossRefGoogle Scholar
  13. 13.
    A. Santos-Mentes, R. Gonzalo-Limbreras, R. Izquierdo-Hornillos,J. Chromatogr. B. Biomed. Appl.,673, No. 1, 27–33 (1995).CrossRefGoogle Scholar
  14. 14.
    S. L. Teylor, M. Lamden, and A. L. Tappel,Lipids,11, No. 7, 530–538 (1976).Google Scholar
  15. 15.
    F. J. Walther, R. Daviv-Cu, E. I. Mehta,et al., Am. J. Physiol.,271, No. 2, Pt. 1, L187-L191 (1996).PubMedGoogle Scholar

Copyright information

© Kluwer Academic/Plenum Publishers 1999

Authors and Affiliations

  • N. G. Kolosova
    • 1
  • G. M. Petrakova
    • 1
  • M. A. Gilinskii
    • 1
  1. 1.Institute of PhysiologySiberian Division of the Russian Academy of Medical SciencesNovosibirsk

Personalised recommendations