Skip to main content
Log in

Hepatic myc protooncogene expression is reduced and possibly correlated with body temperature in fasted Peromyscus leucopus mice

  • Published:
AGE Aims and scope Submit manuscript

Abstract

To examine the effect of fasting on c-myc protooncogene expression, the level of c-myc mRNA was determined at 6 circadian stages (4 hr intervals for 24 hr) in the livers of Peromyscus leucopus mice. After 3 days of fasting a reduced level of c-myc expression was observed compared with ad libitum fed controls (24-hr mean relative expression values = 0.73 and 1.16, respectively, p<.001). Core body temperature, which was continuously monitored using a thermister/transmitter system, showed a significantly lower mean value in the fasted animals (33.1°C vs 36.4°C after 3 days, p<.001). In addition, for both ad libitum fed and fasted mice, expression of c-myc and temperature showed significantly different values at various circadian stages indicating that both parameters exhibited biological rhythms. These findings are qualitatively similar to our previous results with long-term dietary restricted animals (60% of ad libitum for over 100 weeks), indicating that manipulation of the dietary regimen can affect the level of protooncogene expression. Furthermore, the results showed a high degree of correlation between c-myc expression and core body temperature in fasted animals in a manner which suggests that alterations in body temperature precede and may signal subsequent changes in c-myc expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. McCay, C.M.w, Crowell, M.F., and Maynard, L.A.: The effect of retarded growth upon the length of life span and upon ultimate body size. J. Nutr., 10: 63–79, 1935.

    CAS  Google Scholar 

  2. Ross, M.H.: Length of life and nutrition in the rat. J. Nutr., 75: 197–210, 1961.

    PubMed  CAS  Google Scholar 

  3. Fernandes, G., Yunis, E.J., and Good, R.A.: Influences of diet on survival of mice. Proc. Natl. Acad. Sci. U.S.A., 73: 1279–1283, 1976.

    PubMed  CAS  Google Scholar 

  4. Yu, B.P., Masoro, E.J., Murata, I., Bertrand, H.A., and Lynd, F.T.: Life span study of SPF Fischer 344 male rats fed ad libitum or restricted diets: Longevity, growth, lean body mass, and disease. J. Gerontol., 37: 130–141, 1982.

    PubMed  CAS  Google Scholar 

  5. Sarkar, N.H., Fernandez, G., Telag, N.T., Koorides, I.A., and Good, R.A.: Low-calorie diet prevents the development of mammary tumors in C3H mice and reduces circulating prolactin levels, murine mammary tumor virus expression, and proliferation of mammary alveolar cells. Proc. Natl. Acad. Sci. U.S.A., 79: 7758–7762, 1982.

    PubMed  CAS  Google Scholar 

  6. Weindruch, R., and Walford, R.L.: Dietary restriction in mice beginning at one year of age: Effect of life span on spontaneous cancer incidence. Science, 215: 1415–1418, 1982.

    PubMed  CAS  Google Scholar 

  7. Ruggeri, B.A., Klurfeld, D.M., and Kritchevsky, D.: Biochemical alterations in 7, 12-dimethyl-benz[a]anthracene-induced mammary tumors from rats subjected to caloric restriction. Biochem. Biophys. Acta, 939: 239–249, 1987.

    Google Scholar 

  8. Rogers, A.E., Nields, H.M., and Newberne, P.M.: Nutritional and dietary influences of liver tumorigenesis in mice and rats. Arch. Toxicol. Suppl., 10: 231–242, 1987.

    PubMed  CAS  Google Scholar 

  9. Walford, R.L., Harris, S.B., and Weindruch, B.: Dietary restriction and aging: Historical phases, mechanisms and current directions. J. Nutr. 117: 1650–1654, 1987.

    PubMed  CAS  Google Scholar 

  10. Sacher, G.: Life table modification and life prolongation. In Handbook of the Biology of Aging. Finch, C. and Hayflick, L. (eds.), Van Nostrand Reinhold, New York, 1977.

    Google Scholar 

  11. Bishop, J.M.: Viral oncogenes. Cell, 42: 23–28, 1985.

    Article  PubMed  CAS  Google Scholar 

  12. Land, H., Parada, L.F., and Weinberg, R.A.: Tumorigenic conversion of primary embryo fibroblasts requires at least two cooperating oncogenes. Nature, 304: 596–602, 1983.

    Article  PubMed  CAS  Google Scholar 

  13. Nakamura, K.D., Duffy, P.H., Lu, M.H., Turturro, A., and Hart, R.W.: The effect of dietary restriction on myc protooncogene expression in mice: A preliminary study. Mech. Age. Dev., 48: 199–205, 1989.

    Article  CAS  Google Scholar 

  14. Duffy, P.H., Feuers, R.J., Nakamura, K.D., Leakey, J.A., Turturro, A., and Hart, R.W.: Effect of chronic caloric restriction on physiological variables that modulate energy metabolism in the male Fisher 344 rat. Mech. Age. Dev., 48: 117–133, 1989.

    Article  CAS  Google Scholar 

  15. Kelly, K., Cochran, B.H., Stiles, C.D., and Leder, P.: Cell-specific regulation of the c-myc gene by lymphocyte mitogen and platelet-derived growth factor. Cell, 35: 603–610, 1983.

    Article  PubMed  CAS  Google Scholar 

  16. Armelin, H.A., Armelin, M.C., Kelly, K., Stewart, T., Leder, P., Cochran, B.H., and Stiles, C.D.: Functional role for c-myc in mitogenic response to platelet derived growth factor. Nature, 310: 655–660, 1984.

    Article  PubMed  CAS  Google Scholar 

  17. Makino, R., Hayashi, K., and Sugimura, T.: C-myc transcript is induced in rat liver at a very early stage of regeneration or by cycloheximide treatment. Nature, 310: 697–698, 1984.

    Article  PubMed  CAS  Google Scholar 

  18. Lok, E., Nera, E.A., Iverson, F., Scott, F., So, Y., and Clayson, D.B.: Dietary restriction, cell proliferation and carcinogenesis: A preliminary study. Cancer Letters, 38: 249–255, 1988.

    Article  PubMed  CAS  Google Scholar 

  19. Pegram, R.A., Allaben, W.T., and Chou, M.: Effect of caloric restriction on aflatoxin B1-adduct formation and associated factors in Fisher 344 rats: Preliminary findings. Mech. Age. Dev., 48: 167–177, 1989.

    Article  CAS  Google Scholar 

  20. Halberg, F.: Quo Vadis Basic and Clinical Chronobiology: Promise for Health Maintenance. Am. J. Anat., 168: 543–594, 1983.

    Article  PubMed  CAS  Google Scholar 

  21. Duffy, P.H., Feuers, R.J., and Hart, R.W.: Effect of age and torpor on the circadian rhythms of body temperature, activity and body weight in the mouse (Peromyscus leucopus). In: Pauly, J. and Scheving, L. (eds.), Advances in Chronobiology, Part B, Alan R. Liss, Inc., New York, 1987, pp. 111–120.

    Google Scholar 

  22. Feuers, R.J., Duffy, P.H., Leakey, J.A., Turturro, A., Mittelstaedt, R.A., and Hart, R.W.: Effect of chronic caloric restriction on hepatic enzymes of intermediary metabolism in the male Fischer 344 rat. Mech. Age. Dev., 48: 179–189, 1989.

    Article  CAS  Google Scholar 

  23. Nakamura, K.D., and Hart, R.W.: Comparison of protooncogene expression in seven primate fibroblast cultures. Mech. Age. Dev., 39: 177–187, 1987.

    Article  CAS  Google Scholar 

  24. Chirgwin, J.M., Przybyla, A.E., MacDonald, R.A., and Rutter, W.J.: Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochem., 18: 5294–5299, 1979.

    Article  CAS  Google Scholar 

  25. Aviv, H., and Leder, P.: Purification of biologically active globin mRNA by chromatography on oligo-dT-cellulose. Proc. Natl. Acad. Sci. U.S.A., 69: 264–268, 1972.

    PubMed  Google Scholar 

  26. Vennstrom, B., Moscovici, C., Goodman, H.M., and Bishop, J.M.: Molecular cloning of the avian myelocytomatosis virus genome and recovery of infectious virus by transfection of chicken cells. J. Virol., 39: 625–631, 1981.

    PubMed  CAS  Google Scholar 

  27. Rigby, P., Dieckmann, M., Rhodes, C., and Berg, P.: Labeling deoxyribonucleic acid to high specific activity in vitro by nick translation with DNA polymerase. J. Mol. Biol., 113: 237–251, 1977.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Nakamura, K.D., Duffy, P.H., Lu, MH. et al. Hepatic myc protooncogene expression is reduced and possibly correlated with body temperature in fasted Peromyscus leucopus mice. AGE 13, 27–31 (1990). https://doi.org/10.1007/BF02432377

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02432377

Keywords

Navigation