Skip to main content
Log in

Free radical theory of aging: Nutritional implications

  • Published:
AGE Aims and scope Submit manuscript

Abstract

Life expectancy at birth, now about 72 years, is slowly approaching a plateau value of 74–75 years. Further increases in life expectancy may be achieved by a nutritional approach based on the possibility that the free radical reactions going on continuously in biological systems contribute to the degradation of these systems. Growing evidence indicates that random free radical reactions are a major factor in the breakdown of such systems, suggesting that the aging process may be simply the sum of these everpresent deleterious reactions throughout the cells and tissues and that longevity is a reflection of the ability to cope with such reactions. Dietary changes based on this possibility have been shown to: 1) increase the life span of mice, rats, fruit flies and nematodes, 2) inhibit the development of cancer, at least of some forms, 3) slow formation of amyloid, and 4) enhance immune responses. The available data strongly supports the possibility that such dietary changes also have a beneficial effect on the central nervous and cardiovascular systems.

Formulation of human diets, adequate in essential nutrients but designed to minimize random free radical reactions in the body, may reasonably be expected to add five to ten or more years of healthy, productive life to the life span of the average person.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Vital Statistics of the United States, 1973. Vol. II, Section 5. U.S. Dept, of Health, Education and Welfare. Public Health Service. Health Resources Administration. National Center for Health Statistics, Rockville, Maryland, 1975.

  2. Woodhall, B., and Joblon, S.: Prospects for further increases in average longevity. Geriatrics, 12: 586–591, 1957.

    PubMed  CAS  Google Scholar 

  3. Pryor, W. A.: Free Radicals. New York, McGraw-Hill, 1966.

    Google Scholar 

  4. Nonhebel, D. C., and Walton, J. C.: Free-Radical Chemistry. Cambridge, Mass., University Press, 1974.

    Google Scholar 

  5. Harman, D.: Aging: a theory based on free radical and radiation chemistry. J. Gerontol., 11:298–300, 1956.

    PubMed  CAS  Google Scholar 

  6. Harman, D.: Role of free radicals in mutation, cancer, aging, and the maintenance of life. Radiation Res., 16:753–763, 1962.

    PubMed  CAS  Google Scholar 

  7. Harman, D.: Prolongation of life: role of free radical reactions in aging. J. Amer. Geriatrics Soc., 17: 721–735, 1969.

    CAS  Google Scholar 

  8. Harman, D.: The biologic clock: the mitochondria? J. Amer. Geriatrics Soc., 20:145–147, 1972.

    CAS  Google Scholar 

  9. LaBella, F. S., and Paul, G.: Structure of collagen from human tendon as influenced by age and sex. J. Geront., 20:54–59, 1965.

    PubMed  CAS  Google Scholar 

  10. LaBella, F. S., Vivian, S., and Thornhill, D. P.: Amino acid composition of human aortic elastin as influenced by age. J. Gerontol., 21:550–555, 1966.

    PubMed  CAS  Google Scholar 

  11. Sinex, F. M.: Chemical changes in irreplaceable macromolecules, in Biological Aspects of Aging, ed. by Shock, N. W., New York, Columbia Univ. Press, 1962, pp. 307–311.

    Google Scholar 

  12. Matsumura, G., Herp, A., and Pigmon, W.: Depolymerization of hyaluronic acid by autoxidants and radiations. Radiation Res., 28:735–752, 1966.

    PubMed  CAS  Google Scholar 

  13. Hartroft, W. S., and Porta, E. S.: Ceroid. Am. J. M. Sc., 258:324–344, 1965.

    Google Scholar 

  14. Norkin, S. A.: Lipid nature of ceroid in experimental nutritional cirrhosis. Arch. Path., 82:259–266, 1966.

    PubMed  CAS  Google Scholar 

  15. Hoffsten, P. E., Hunter, F. E., Jr., Gerbicki, J. M., and Weinstein, J.: Formation of “lipid peroxide” under conditions which lead to swelling and lysis of rat liver mitochondria. Biochem. & Biophys. Res. Commun., 7:276–280, 1962.

    Article  CAS  Google Scholar 

  16. Robinson, J. D.: Structural changes in microsomal suspension. III. Formation of lipid peroxides. Arch. Biochem. & Biophys., 112:170–179, 1965.

    Article  CAS  Google Scholar 

  17. Casarett, G. W.: Similarities and contrasts between radiation and time pathology, in Advances in Gerontological Research, Vol. 1, edited by Strehler, B. L., New York, Academic Press, 1964, pp. 109–163.

    Google Scholar 

  18. Harman, D., and Piette, L. H.: Free radical theory of aging: free radical reactions in serum. J. Gerontol., 21:560–565, 1966.

    PubMed  CAS  Google Scholar 

  19. Sies, H.: Biochemie des peroxysoms in der leberzelle. Angew. Chem. (Engl.), 86:789–824, 1974.

    CAS  Google Scholar 

  20. Flohé, L., Günzier, W. A., and Ladenstein, R.: Glutathione peroxidase, in Gluthathione: Metabolism and Function, edited by Arias, I. M., and Jakoby, W. B., New York, Raven Press, 1976, pp. 115–138.

    Google Scholar 

  21. Fridovich, I.: Superoxide Dismutase, in Molecular Mechanisms of Oxygen Activation, edited by Hayaishi, O., New York, Academic Press, 1974, pp. 453–477.

    Google Scholar 

  22. Kellogg, E. W., and Fridovich, I.: Superoxide, hydrogen peroxide, and singlet oxygen in lipid peroxidation by an xanthine oxidase system. J. Biol. Chem., 250:8812–8817, 1975.

    PubMed  CAS  Google Scholar 

  23. Dublin, L. L., Lotka, A. J., and Spiegelman, M.: Length of life. New York, The Ronald Press Co., 1949, p. 193.

    Google Scholar 

  24. Berg, B. N., and Simms, H. S.: Nutrition and longevity in the rat. II. Longevity and onset of disease with different levels of food intake. J. Nutr., 225–263, 1960.

  25. Harman, D.: Free radical theory of aging: effect of the amount and degree of unsaturation of dietary fat on mortality rate. J. Gerontol., 26:451–457, 1971.

    PubMed  CAS  Google Scholar 

  26. Harman, D.: Free radical theory of aging: effect of free radical reaction inhibitors on the mortality rate of male LAF1 mice. J. Gerontol., 23:476–482, 1968.

    PubMed  CAS  Google Scholar 

  27. Comfort, A.: Effect of ethoxyquin on the longevity of C3H mice. Nature, 229:254–255, 1971.

    Article  PubMed  CAS  Google Scholar 

  28. Emnuel, N. M.: Free radicals and the action of of radical processes under states and aging in living organisms and in man. Quart. Rev. Biophysics, 9:283–308, 1976.

    Google Scholar 

  29. Bun-Hoi, N. P., and Ratsimamanga, A. R.: Age retardation in the rat by nordihydroguaiaretic acid. C. r. Seánc. Soc. Biol., 153:1180–1182, 1959.

    Google Scholar 

  30. Epstein, J., and Gershon, D.: Studies on aging in nematodes IV. The effect of antioxidants on cellular damage and life span. Mech. Age. Dev., 1:257–264, 1972.

    CAS  Google Scholar 

  31. Lea, A. J.: Dietary factors associated with death-rates from certain neoplasms in man. Lancet, 2: 332–333, 1966.

    Article  PubMed  CAS  Google Scholar 

  32. Wattenberg, L. W.: Inhibition of carcinogenic and toxic effects of polycyclic hydrocarbons by phenolic antioxidants and ethoxyquin. J. Nat. Cancer Inst., 48:1425–1430, 1972.

    PubMed  CAS  Google Scholar 

  33. Wattenberg, L. W.: Inhibition of chemical carcinogen-induced pulmonary neoplasia by butylated hydroxyanisole. J. Nat. Cancer Inst., 50:1541–1544, 1973.

    PubMed  CAS  Google Scholar 

  34. Black, H. S., and Chan, J. T.: Suppression of ultraviolet light-induced tumor formation by dietary antioxidants. J. Invest. Dermatol., 65:412–414, 1975.

    Article  PubMed  CAS  Google Scholar 

  35. Shamberger, R. J., Tytko, S., and Willis, C. E.: Antioxidants in cereals and in food preservatives and declining gastric cancer mortality. Cleveland Clinc Quart., 39:119–124, 1972.

    CAS  Google Scholar 

  36. Harman, D.: Atherosclerosis: effect of rate of growth, Circulation Res., 10:851–852, 1962.

    PubMed  CAS  Google Scholar 

  37. Harman, D.: Atherosclerosis: hypothesis concerning the initiating steps in pathogenesis, J. Gerontol., 12:199–202, 1957.

    PubMed  CAS  Google Scholar 

  38. Patil, V. S., and Magar, N. G.: Effect of dietary fat intake and age on polyunsaturated fatty acids in human blood serum. Biochem. J., 76:417–420, 1960.

    PubMed  CAS  Google Scholar 

  39. Böttcher, C. J. F., Boelsum-van Houte, E., Ter Haar Romeny-Wachter, C. C., Woodford, F. P., and van Gent, C. M.: Lipid and fatty acid composition of coronary and cerebral arteries at different stages of atherosclerosis. Lancet, 2:1162–1166, 1960.

    Article  Google Scholar 

  40. Burt, R. C.: The incidence of acid-fast pigment (ceroid) in aortic atherosclerosis. Am. J. Clin. Path., 22:135–139, 1952.

    PubMed  CAS  Google Scholar 

  41. Fritz, K. E.: A study of ceroid in the human aorta. Thesis, Union University, Albany Medical College, Albany, New York, 1961.

    Google Scholar 

  42. Schornagel, H. E.: The occurrence of iron and ceroid in coronary arteries. J. Path. & Bact., 72: 267–272, 1956.

    Article  CAS  Google Scholar 

  43. Swell, L., Field, H., Jr., and Treadwell, C. R.: Relation of age and race to serum cholesterol ester fatty acid composition. Proc. Soc. Exper. Biol. & Med., 105:129–131, 1960.

    CAS  Google Scholar 

  44. Autar, M. A., Ohlson, M.A., and Hodges, R. E.: Changes in retail market food supplies in the United States in the last seventy years in relation to the incidence of coronary heart disease, with special reference to dietary carbohydrates and essential fatty acids. Am. J. Clin. Nutrition, 14:169–178, 1964.

    Google Scholar 

  45. Harman, D.: Hard and soft water and the incidence of sudden death from ischemic heart disease: consideration of copper, magnesium and calcium, in Nutritional Imbalances in Infant and Adult Disease, edited by Seelig, M. S., New York, Spectrum Publications, Inc., 1977, pp. 1–7.

    Google Scholar 

  46. Gryglewski, R. J., Bunting, S., Moncada, S., Flower, R. J., and Vane, J. R.: Arterial walls are protected against deposition of platelet thrombi by a substance (prostaglandin X) which they make from prostaglandin endoperoxides. Prostaglandins, 12:685–713, 1976.

    Article  PubMed  CAS  Google Scholar 

  47. Moncada, S., Gryglewski, R. J., Bunting, S., and Vane, J. R.: A lipid peroxide inhibitis the enzyme in blood vessel microsomes that generates from prostaglandin endoperoxides the substance (prostaglandin X) which prevents platelet aggregation. Prostaglandins, 12: 715–737, 1976.

    Article  PubMed  CAS  Google Scholar 

  48. Moncada, S., Higgs, E. A., and Vane, J. R.: Human arterial and venous tissues generates prostacyclin (prostaglandin X), a potent inhibitor of platelet aggregation. Lancet, 1:18–21, 1977.

    Article  PubMed  CAS  Google Scholar 

  49. Schwartz, C. J., and Walsh, W. J.: The pathologic basis of sudden death. Prog. Cardiovascul. Dis., 13: 465–481, 1971.

    Article  CAS  Google Scholar 

  50. Pickering, G.: Hypertension: Causes, Consequences, and Management, 2nd Edition. London, Churchill Livingstone, 1974.

    Google Scholar 

  51. Thompson, R. H. S., and Watson, D.: Serum copper levels in pregnancy and preeclampsia. J. Clin. Path., 2:193–196, 1949.

    Google Scholar 

  52. Lahey, M. E., Gubler, C. J., Cartwright, G. E., and Wintrobe, M. M.: Studies on copper metabolsim. VII. Blood copper in pregnancy and various pathologic states. J. Clin. Invest., 32:329–339, 1953.

    Article  PubMed  CAS  Google Scholar 

  53. DeAlvarez, R. R., Gaiser, D. F., Seinkins, D. M., Smith, E. K., and Bratvold, G. E.: Serial studies of serum lipids in normal human pregnancy. Am. J. Obst. & Gynec., 77:743–757, 1959.

    CAS  Google Scholar 

  54. Clemetson, C. A. B., and Andersen, L.: Ascorbic acid metabolism in preeclampsia. Obst. & Gynec., 24: 774–782, 1964.

    CAS  Google Scholar 

  55. Laragh, J. H.: The pill, hypertension, and the toxemias of pregnancy. Am. J. Obstet. Gynecol., 109: 210–213, 1971.

    PubMed  CAS  Google Scholar 

  56. Smith, J. D., Jr., and Brown, E. D.: Effects of oral contraceptive agents on trace element metabolism — a review, in, Trace Elements in Human Health and Disease. Vol. 2, Essential and Toxic Elements, edited by Prasad, A. S., and Oberleas, D., New York, Academic Press, 1976, pp. 315–345.

    Google Scholar 

  57. Stokes, T., and Wynn, V.: Serum lipids in women on oral contraceptives. Lancet, 2:677–681, 1971.

    Article  PubMed  CAS  Google Scholar 

  58. Dusting, G. J., Moncada, S., and Vane, J. R.: Prostacyclin (PGX) is the endogenous metabolite responsible for relaxation of coronary arteries induced by arachidonic acid. Prostaglandins, 13:3–15, 1977.

    Article  PubMed  CAS  Google Scholar 

  59. Cohen, A. S.: Amyloidosis. New England J. Med., 277:522–530, 574–583, 628–638, 1967.

    Article  CAS  Google Scholar 

  60. Harman, D., Eddy, D. E., and Noffsinger, J.: Free radical theory of aging: inhibition of amyloidosis in mice by antioxidants; possible mechanism. J. Amer. Geriatrics Soc., 24:203–210, 1976.

    CAS  Google Scholar 

  61. Eddy, D., and Harman, D.: Free radical theory of aging: effect of age, sex and dietary precursors on rat brain docosahexanoic acid. J. Amer. Geriatrics Soc., 25:220–229, 1977.

    CAS  Google Scholar 

  62. Harman, D., Hendricks, S., Eddy, D. E., and Seibold, Jr., J.: Free radical theory of aging: effect of dietary fat on central nervous system function. J. Amer. Geriatrics Soc., 24:301–307, 1976.

    CAS  Google Scholar 

  63. Heidrick, M. L., and Makinodan, T.: Nature of cellular deficiencies in age-related decline of the immune system. Gerontologia, 18:305–320, 1972.

    Article  PubMed  CAS  Google Scholar 

  64. Harman, D., Heidrick, M. L., and Eddy, D. E.: Free radical theory of aging: effect of free radical reaction inhibitors on the immune response. J. Amer. Geriatrics Soc., 25:400–407, 1977.

    CAS  Google Scholar 

  65. Harman, D.: The free radical theory of aging: effect of age on serum copper levels. J. Gerontol., 20: 151–153, 1965.

    PubMed  CAS  Google Scholar 

  66. Harman, D.: The free radical theory of aging: the effect of age on serum mercaptan levels. J. Gerontol., 15:38–40, 1960.

    PubMed  CAS  Google Scholar 

  67. Leto, S., Yiengst, M. J., and Barrows, C. H., Jr.: The effect of age and protein deprivation on the sulphydryl content of serum albumin. J. Gerontol., 25:4–8, 1970.

    PubMed  CAS  Google Scholar 

  68. Adelstein, S. J., and Vallee, B. L.: Copper metabolism in man. New England J. Med., 265:892–897, 941–946, 1961.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This is the second paper of the mini-symposium on nutrition and aging organized by Charles H. Barrows, Jr., and presented on Thursday, September 29, 1977 as part of the 7th Annual Meeting of the American Aging Association in New York City.

About this article

Cite this article

Harman, D. Free radical theory of aging: Nutritional implications. AGE 1, 145–152 (1978). https://doi.org/10.1007/BF02432188

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02432188

Keywords

Navigation