Advertisement

Advances in Computational Mathematics

, Volume 3, Issue 1–2, pp 101–113 | Cite as

A mixed finite element for the stokes problem using quadrilateral elements

  • Mohamed Farhloul
  • Michel Fortin
Article

Abstract

The object of this paper is to complete the results obtained in [3] by showing that the new mixed finite element that we have constructed in [3] also works for quadrilateral elements and to compare this method with the standard finite volume method. Estimates of optimal order are derived for both the new mixed finite element and an associated finite volume method.

Key words

Mixed finite elements finite volumes quadrilateral elements reduced integrations Stokes equations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    F. Brezzi and M. Fortin,Mixed and Hybrid Finite Element Methods (Springer, 1991).Google Scholar
  2. [2]
    P.G. Ciarlet,The Finite Element Method for Elliptic Problems (North-Holland, 1978).Google Scholar
  3. [3]
    M. Farhloul and M. Fortin, A new mixed finite element for the Stokes and the elasticity problems, SIAM J. Num. Anal. 30(1993)971–990.MATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    V. Girault and P.A. Raviart,Finite Element for Navier-Stokes Equations, Theory and Algorithms, Springer S.C.M. 5 (Springer, 1986).Google Scholar
  5. [5]
    R.A. Nicolaides, Flow discretization by complementary volume techniques, AIAA paper 89-1978, in:Proc. 9th AIAA CFD Meeting, Buffalo, NY (1989).Google Scholar
  6. [6]
    R.A. Nicolaides, Analysis and convergence of the MAC scheme. I. The linear problem, SIAM J. Num. Anal. 29(1992)1579–1591.MATHCrossRefMathSciNetGoogle Scholar
  7. [7]
    S.V. Patankar, Numerical heat transfer and fluid flow, Series in Computational Methods in Mechanics and Thermal Sciences (1980).Google Scholar
  8. [8]
    P.A. Raviart and J.M. Thomas,A Mixed Finite Element Method for 2nd Order Elliptic Problems, Lecture Notes in Mathematics 606 (Springer, New York, 1977) pp. 292–315.Google Scholar
  9. [9]
    J.M. Thomas, Sur l'analyse numérique des méthodes d'éléments finis hybrides et mixtes, Thèse, Université Pierre et Marie Curie, Paris 6 (1977).Google Scholar

References

  1. [1]
    G. Chandler, Superconvergence of numerical solutions to second kind integral equations, PhD Thesis, Australian National University (1979).Google Scholar
  2. [2]
    M. Costabel and E.P. Stephan, On the convergence of collocation methods for boundary integral equations on polygons, Math. Comp. 49 (1987) 461–478.MATHCrossRefMathSciNetGoogle Scholar
  3. [3]
    D.K. Fadeev and V.N. Fadeeva, in:Computational Methods of Linear Algebra (W.H. Freeman. San Francisco and London, 1963) pp. 532–551.Google Scholar
  4. [4]
    D. Gaier,Lectures on Complex Approximation (Birkhäuser, Boston/Basel/Stuttgart, 1987).MATHGoogle Scholar
  5. [5]
    M.H. Gutknecht, Stationary and almost stationary iterative (k,l)-step methods for linear and non-linear systems of equations, Numer. Math. 56 (1989) 179–213.MATHCrossRefMathSciNetGoogle Scholar
  6. [6]
    M.H. Gutknecht, in:Numerical Conformal Mapping, ed. L.N. Trefethen (North-Holland, 1986) pp. 31–77.Google Scholar
  7. [7]
    M.H. Gutknecht, Numerical experiments on solving Theodorsen's integral equation for conformal maps with the fast Fourier transform and various non-linear iterative methods, SIAM J. Sci. State. Comp. 4 (1983) 1–30.MATHCrossRefMathSciNetGoogle Scholar
  8. [8]
    D.M. Hough, The use of splines and singular functions in an integral equation method for conformal mapping, PhD. thesis, Brunel University (1983).Google Scholar
  9. [9]
    D.M. Hough, Exact formulae for certain integrals arising in potential theory, IMAJNA 1 (1981) 223–228.MATHMathSciNetGoogle Scholar
  10. [10]
    D.M. Hough, Jacobi polynomial solutions of first kind integral equations for numerical conformal mapping. JCAM 12 & 13 (1985) 359–369.MathSciNetGoogle Scholar
  11. [11]
    R.S. Lehman, Development of the mapping function at an analytic corner, Pacific J. Math 7 (1957) 1437–1449.MATHMathSciNetGoogle Scholar
  12. [12]
    M.A. Jaswon and G.T. Symm,Integral Equation Methods in Potential Theory and Elastostatics (Academic Press, London, 1977).MATHGoogle Scholar
  13. [13]
    A. Kufner, O. John and S. Fucik,Function Spaces (Noordhoff, Leiden, 1977).MATHGoogle Scholar
  14. [14]
    J. Levesley, A study of Chebyshev weighted approximations to the solutions of Symm's integral equation for numerical conformal mapping, PhD. Thesis, Coventry Polytechnic (1991).Google Scholar
  15. [15]
    D.M. Hough, J. Levesley and S.N. Chandler-Wilde, Numerical conformal mapping via Chebyshev weighted solutions of Symm's integral equation, J. Comp. Appl. Math. 46 (1993) 29–48.MATHCrossRefMathSciNetGoogle Scholar
  16. [16]
    Z. Nehari,Conformal Mapping (McGraw-Hill, New York, 1952).MATHGoogle Scholar
  17. [18]
    J. Hoschek, Detecting regions with undesirable curvature, Comp. Aided Geom. Design 1 (1984) 183–192.MATHCrossRefGoogle Scholar
  18. [19]
    J. Hoschek and D. Lasser,Grundlagen der geometrischen Datenverarbeitung, 2nd ed. (Teubner, Stuttgart, 1992).MATHGoogle Scholar
  19. [20]
    W. Lü, Rational offsets by reparametrizations, preprint (1992).Google Scholar
  20. [21]
    W. Lü, Rationality of the offsets to algebraic curves and surfaces, preprint (1993).Google Scholar
  21. [22]
    B. Pham, Offset curves and surfaces: a brief survey, Comp. Aided Design 24 (1992) 223–229.CrossRefGoogle Scholar
  22. [23]
    H. Pottmann, Rational curves and surfaces with rational offsets, Comp. Aided Geom. Design (1995), to appear.Google Scholar
  23. [24]
    H. Pottmann, Applications of the dual Bézier representation of rational curves and surfaces, in:Curves and Surfaces in Geometric Design, eds. P. J. Laurent, A. L. Méhauté and L. L. Schumaker (AK Peters, Wellesley, MA, 1994) pp. 377–384.Google Scholar
  24. [25]
    W. Wunderlich, Algebraische Böschungslinien dritter und vierter Ordnung, Sitzungsberichte der Österreichischen Akademie der Wissenschaften 181 (1973) 353–376.MATHMathSciNetGoogle Scholar

References

  1. [1]
    H. Arndt, Numerical solution of retarded initial value problems: local and global error and stepsize control, Numer. Math. 43 (1984) 343–360.MATHCrossRefMathSciNetGoogle Scholar
  2. [2]
    H. Arndt, P.J. van der Houwen and B.P. Sommeijer, Numerical interpolation of retarded differential equations,Delay Equations: Approximation, Theory and Applications, ISNM 72 (Birkhäuser, 1985) pp. 41–51.Google Scholar
  3. [3]
    M. Artola, Equations paraboliques à retardment, C.R. Acad. Sci. Paris 264 (1967) 668–671.MATHMathSciNetGoogle Scholar
  4. [4]
    S. Arunsawatwong and V. Zakian,I MN recursions for long sequences of linear delay differential equations, Control Systems Centre report 791, UMIST, Manchester (1993).Google Scholar
  5. [5]
    U.M. Ascher and L.R. Petzold, The numerical solution of delay-differential-algebraic equations of retarded and neutral type, SIAM J. Numer, Anal., to appear.Google Scholar
  6. [6]
    G. Bader, Ein Mehrschrittverfahren mit variabler Schrittweite und variabler Ordnung zur Intergration von Systemen retardierter Differentialgleichungen mit zustandsabhängiger Verzögerung, Diplomarbeit Universität Heidelberg (1983).Google Scholar
  7. [7]
    C.T.H. Baker, Propositions on the robustness of multistep formulae, Technical Report No. 244, University of Manchester (1994). J. Numer, Func. Anal. Optim., to appear.Google Scholar
  8. [8]
    C.T.H. Baker, Dynamics of discretized equations for DDEs,Proc. HERMIS '94 Conf., Athens University of Economics and Business (Sept. 1994).Google Scholar
  9. [9]
    C.T.H. Baker and C.A.H. Paul, Computing stability regions — Runge — Kutta methods for delay differential equations, IMA J. Numer. Anal. 14 (1994) 347–362.MATHCrossRefMathSciNetGoogle Scholar
  10. [10]
    C.T.H. Baker and C.A.H. Paul, Parallel continuous Runge—Kutta methods and vanishing lag delay differential equations, Adv. Comp. Math. 1 (1993) 367–394.MATHCrossRefMathSciNetGoogle Scholar
  11. [11]
    C.T.H. Baker and C.A.H. Paul, A global convergence theorem for a class of parallel continuous explicit Runge—Kutta methods and vanishing lag delay differential equations, Technical Report No. 229, University of Manchester (1993); SIAM J. Numer. Anal. (1996), to appear.Google Scholar
  12. [12]
    C.T.H. Baker, C.A.H. Paul and D.R. Willé, A bibliography on the numerical solution of delay differential equations, Technical Report, University of Manchester, in preparation.Google Scholar
  13. [13]
    C.T.H. Baker, J.C. Butcher and C.A.H. Paul, Experience of STRIDE applied to delay differential equations, Technical Report No. 208, University of Manchester (1992).Google Scholar
  14. [14]
    H.T. Banks and F. Kappel, Spline approximations for functional differential equations, J. Diff. Eqns. 34 (1979) 496–522.MATHCrossRefMathSciNetGoogle Scholar
  15. [15]
    V.K. Barwell, Special stability problems for functional differential equations, BIT 15 (1975) 130–135.MATHCrossRefMathSciNetGoogle Scholar
  16. [16]
    A. Bellen, One-step collocation for delay differential equations, J. Comp. Appl. Math. 10 (1984) 275–283.MATHCrossRefMathSciNetGoogle Scholar
  17. [17]
    A. Bellen and M. Zennaro, Numerical solution of delay differential equations by uniform corrections to an implicit Runge-Kutta method, Numer. Math. 47 (1985) 301–316.MATHCrossRefMathSciNetGoogle Scholar
  18. [18]
    R.E. Bellman and K.L. Cooke,Differential-Difference Equations, Mathematics in Science and Engineering 6 (Academic Press, 1963).Google Scholar
  19. [19]
    R.E. Bellman and J.M. Danskin, A survey of the mathematical theory of time-lag, retarded control, and hereditary processes, R-256, The Rand Corporation, Santa Monica (1954).Google Scholar
  20. [20]
    R.E. Bellman, J.D. Buell and R.E. Kalaba, Mathematical experimentation in time-lag modulation, Commun. ACM 9 (1966) 752–753.CrossRefGoogle Scholar
  21. [21]
    R.E. Bellman, J.D. Buell and R.E. Kalaba, Numerical integration of a differential-difference equation with a decreasing time-lag. Commun. ACM 8 (1965) 227–228.MATHCrossRefMathSciNetGoogle Scholar
  22. [22]
    H.G. Bock and J.P. Schlöder, Numerical solution of retarded differential equations with state-dependent time lags. Z. angew. Math. Mech. 61 (1981) 269–271.Google Scholar
  23. [23]
    U. Buchacker and S. Filippi, Stepsize control for delay differential equations using a pair of Runge-Kutta formulae. J. Comp. Appl. Math. 26 (1989) 339–343.MATHCrossRefMathSciNetGoogle Scholar
  24. [24]
    K. Burrage,Parallel and Sequential Methods for Ordinary Differential Equations (OUP, 1995).Google Scholar
  25. [25]
    K. Burrage, J.C. Butcher and F.H. Chipman, An implementation of singly-implicit Runge-Kutta methods, BIT 20 (1980) 326–340.MATHCrossRefMathSciNetGoogle Scholar
  26. [26]
    J.C. Butcher, The adaptation of STRIDE to delay differential equations, Appl. Numer. Math. 9 (1992) 415–425.MATHCrossRefMathSciNetGoogle Scholar
  27. [27]
    J. Carr, The asymptotic behaviour of the solutions of some linear functional differential equations, D. Phil., University of Oxford (1974).Google Scholar
  28. [28]
    N.H. Chosky, Time-lag controls: a bibliography, IRE Trans. Auto. Cont. AC-5 (1966) 66–70.Google Scholar
  29. [29]
    C.W. Cryer, Numerical methods for functional differential equations,Delay and Functional Differential Equations, ed. K. Schmitt (Academic Press, 1972).Google Scholar
  30. [30]
    G. Dahlquist, Recent work of stiff differential equations, Technical Report No. TRITA-NA-7512, Royal Institute of Technology, Stockholm (1975).Google Scholar
  31. [31]
    R.D. Driver,Ordinary and Delay Differential Equations, Applied Mathematics Series 20 (Springer, 1977).Google Scholar
  32. [32]
    E.L. El'sgol'ts,Qualitative Methods in Mathematical Analysis, Transl. Math. Monog. 12 (Academic Press, 1964).Google Scholar
  33. [33]
    E.L. El'sgol'ts and S.B. Norkin,Introduction to the Theory and Applications of Differential Equations with Deviating Arguments, Mathematics in Science and Engineering 105 (Academic Press, 1973).Google Scholar
  34. [34]
    W.H. Enright, Continuous numerical methods for ODEs and the implication for delay differential equations,Proc. HERMIS '94 Conf., Athens University of Economics and Business (Sept. 1994).Google Scholar
  35. [35]
    W.H. Enright, The relative efficiency of alternative defect control schemes for high-order continuous Runge-Kutta formulas, SIAM J. Numer. Anal. 30 (1993) 1419–1445.MATHCrossRefMathSciNetGoogle Scholar
  36. [36]
    W.H. Enright, A new error-control for initial-value solvers, Appl. Math. Comp. 31 (1989) 288–301.CrossRefMathSciNetGoogle Scholar
  37. [37]
    W.H. Enright, Analysis of error control strategies for continuous Runge-Kutta methods, SIAM J. Numer. Anal. 26 (1989) 588–599.MATHCrossRefMathSciNetGoogle Scholar
  38. [38]
    W.H. Enright and M. Hu, Interpolating Runge-Kutta methods for vanishing lag delay differential equations, Computer Science Technical Report No. 292/94, University of Toronto (1994).Google Scholar
  39. [39]
    W.H. Enright, K.R. Jackson, S.P. Nørsett and P.G. Thomsen, Interpolants for Runge-Kutta formulas, ACM Trans. Math. Soft. 12 (1986) 193–218.MATHCrossRefGoogle Scholar
  40. [40]
    M.A. Feldstein, Discretization methods for retarded ordinary differential equations, Doctoral thesis, Department of Mathematics, UCLA (1964).Google Scholar
  41. [41]
    M.A. Feldstein and K.W. Neves, High-order methods for state-dependent delay differential equations with nonsmooth solutions, SIAM J. Numer. Anal. 21 (1984) 844–863.MATHCrossRefMathSciNetGoogle Scholar
  42. [42]
    M.A. Feldstein and J. Sopka, Numerical methods for nonlinear Volterra integro-differential equations. SIAM J. Numer. Anal. 11 (1974) 826–846.MATHCrossRefMathSciNetGoogle Scholar
  43. [43]
    K. Gopalsamy,Stability and Oscillations in Delay Differential Equations of Population Dynamics (Kluwer, Dordrecht, 1992).MATHGoogle Scholar
  44. [44]
    E. Hairer, G. Wanner and S.P. Nørsett,Solving Ordinary Differential Equations 1, Springer Series in Computational Mathematics 8 (Springer, 1983).Google Scholar
  45. [45]
    A. Halanay,Differential Equations: Stability, Oscillations, Time Lags, Mathematics in Science and Engineering 23 (Academic Press, 1966).Google Scholar
  46. [46]
    H. Hayashi and W.H. Enright, A new algorithm for vanishing delay problems, Canadian Applied Mathematics Society, annual meeting, University of York (1993).Google Scholar
  47. [47]
    D.J. Higham, Highly continuous Runge-Kutta interpolants, ACM Trans. Math. Soft. 17 (1991) 368–386.MATHCrossRefMathSciNetGoogle Scholar
  48. [48]
    D.R. Hill, A new class of one-step methods for the solution of Volterra functional differential equations, BIT 14 (1974), 298–305.MATHCrossRefGoogle Scholar
  49. [49]
    K.J. in't Hout, Runge—Kutta methods in the numerical solution of delay differential equations, Ph.D. thesis, Department of Mathematics and Computer Science, University of Leiden (1992).Google Scholar
  50. [50]
    K.J. in't Hout, A new interpolation procedure for adapting Runge-Kutta methods to delay differential equations, BIT 32 (1992) 634–649.MATHCrossRefMathSciNetGoogle Scholar
  51. [51]
    K.J. in't Hout and M.N. Spijker, Stability analysis of numerical methods for delay differential equations. Numer. Math. 59 (1991) 807–814.MATHCrossRefMathSciNetGoogle Scholar
  52. [52]
    P.J. van der Houwen and B.P. Sommeijer, Linear multistep methods with reduced truncation error for periodic initial value problems, IMA J. Num. Anal. 4 (1984) 479–489.MATHCrossRefGoogle Scholar
  53. [53]
    P.J. van der Houwen and B.P. Sommeijer, Stability in linear multistep methods for pure delay equations, J. Comp. Appl. Math. 10 (1984) 55–63.MATHCrossRefGoogle Scholar
  54. [54]
    P.J. van der Houwen, B.P. Sommeijer and C.T.H. Baker, On, the stability of predictor-corrector methods for parabolic equations with delay, IMA J. Num. Anal. 6 (1986) 1–23.MATHCrossRefGoogle Scholar
  55. [55]
    A. Iserles, Stability and dynamics of numerical methods for nonlinear ordinary differential equations, IMA J. Num Anal. 10 (1990) 1–30.MATHCrossRefMathSciNetGoogle Scholar
  56. [56]
    A. Iserles and M. Buhmann, Stability of the discretized pantograph differential-equation, Math. Comp. 60 (1993) 575–589.MATHCrossRefMathSciNetGoogle Scholar
  57. [57]
    Z. Jackiewicz, Waveform relaxation methods for functional differential systems of neutral type,Proc. HERMIS ′94 Conf., Athens University of Economics and Business (Sept. 1994).Google Scholar
  58. [58]
    Z. Jackiewicz and E. Lo, The numerical integration of neutral functional-differential equations by fully implicit one-step methods, Technical Report No. 129, Arizona State University (1991).Google Scholar
  59. [59]
    F. Kappel and K. Kunisch Spline approximations for neutral functional-differential equations, SIAM J. Numer. Anal. 18 (1981) 1058–1080.MATHCrossRefMathSciNetGoogle Scholar
  60. [60]
    T. Kato, Asymptotic behaviour of solutions of the functional differential equationsý (x)=ay(λx)+by(x), in:Delay and Functional Differential Equations and Their Applications, ed. K. Schmitt (Academic Press, 1972).Google Scholar
  61. [61]
    T. Kato and J.B. McLeod, The functional differential equationý(x)=ay(λx)+by(x) Bull. Amer. Math. Soc. 77 (1971) 891–937.MATHCrossRefMathSciNetGoogle Scholar
  62. [62]
    V.B. Kolmanovskii and A. Myshkis,Applied Theory of Functional Differential Equations, Mathematics and its Applications 85 (Kluwer, 1992).Google Scholar
  63. [63]
    V.B. Kolmanovskii and V.R. Nosov,Stability of Functional Differential Equations, Mathematics in Science and Engineering 180 (Academic Press, 1986).Google Scholar
  64. [64]
    P. Linz, Linear multistep methods for Volterra integro-differential equations, J. ACM 16 (1969) 295–301.MATHCrossRefMathSciNetGoogle Scholar
  65. [65]
    Y. Kuang,Delay Differential Equations with Applications in Population Dynamics, Mathematics in Science and Engineering 191 (Academic Press, 1993).Google Scholar
  66. [66]
    M.Z. Liu and M.N. Spijker, The stability of σ-methods in the numerical solution of delay differential equations, IMA J. Num. Anal. 10 (1990) 31–48.MATHCrossRefMathSciNetGoogle Scholar
  67. [67]
    Matlab, The Mathworks Inc., Natick, MA 01760.Google Scholar
  68. [68]
    K.W. Neves, Automatic integration of functional differential equations: an approach, ACM Trans. Math. Soft. 1 (1975) 357–368.MATHCrossRefMathSciNetGoogle Scholar
  69. [69]
    K.W. Neves and S. Thompson, Software for the numerical-solution of systems of functional-differential equations with state-dependent delay, Appl. Numer. Math. 9 (1992) 385–401.MATHCrossRefMathSciNetGoogle Scholar
  70. [70]
    K.W. Neves and M.A. Feldstein, Characterisation of jump discontinuities for state-dependent delay differential equations, J. Math. Anal. Appl. 56 (1976) 689–707.MATHCrossRefMathSciNetGoogle Scholar
  71. [71]
    H.J. Oberle and H.J. Pesch, Numerical treatment of delay differential equations by Hermite interpolation, Num. Math. 37 (1981) 235–255.MATHCrossRefMathSciNetGoogle Scholar
  72. [72]
    J. Oppelstrup, The RKFHB4 method for delay differential equations, Lecture Notes in Mathematics 631 (1978) pp. 133–146.CrossRefMathSciNetGoogle Scholar
  73. [73]
    B. Owren and M. Zennaro, Derivation of efficient, continuous explicit Runge-Kutta methods, SIAM J. Sci. Stat. Comp. 13 (1992) 1488–1501.MATHCrossRefMathSciNetGoogle Scholar
  74. [74]
    C.A.H. Paul, Performance and properties of a class of parallel continuous explicit Runge-Kutta methods for ordinary and delay differential equations,Proc. HERMIS ′94 Conf., Athens University of Economics and Business (Sept. 1994).Google Scholar
  75. [75]
    C.A.H. Paul, Runge-Kutta methods for functional differential equations, Ph.D. thesis, Mathematics Department, University of Manchester (1992).Google Scholar
  76. [76]
    C.A.H. Paul, Developing a delay differential equation solver, Appl. Num. Math. 9 (1992) 403–414.MATHCrossRefGoogle Scholar
  77. [77]
    T.L. Saaty,Modern Nonlinear Mathematics, (Dover, New York, 1967).Google Scholar
  78. [78]
    L.F. Shampine, Interpolation for Runge-Kutta methods, SIAM J. Numer. Anal. 22 (1985) 1014–1026.MATHCrossRefMathSciNetGoogle Scholar
  79. [79]
    L.F. Shampine and P. Bogacki, The effect of changing the stepsize in linear multistep codes, SIAM J. Sci. Stat. Comp. 10 (1989) 1010–1023.MATHCrossRefMathSciNetGoogle Scholar
  80. [80]
    H.L. Smith and Y. Kuang, Slowly oscillating periodic-solutions of autonomous state-dependent delay equations, Nonlinear Anal. — Theory, Meth. Appl. 19 (1992) 855–872.MATHCrossRefMathSciNetGoogle Scholar
  81. [81]
    H.J. Stetter, Numerische Lösung von Differentialgleichungen mit nacheilendem Argument, ZAMM 45 (1965) 79–80.Google Scholar
  82. [82]
    L. Tavernini, One-step methods for the numerical solution of Volterra functional differential equations, SIAM J. Numer. Anal. 8 (1971) 786–795.MATHCrossRefMathSciNetGoogle Scholar
  83. [83]
    L. Torelli, Stability of numerical methods for delay differential equations, J. Comp. Appl. Math. 25 (1989) 15–26.MATHCrossRefMathSciNetGoogle Scholar
  84. [84]
    L. Wiederholt, Stability of multistep methods for delay differential equations, Math. Comp. 30 (1976) 283–290.MATHCrossRefMathSciNetGoogle Scholar
  85. [85]
    L. Wiederholt, Numerical solution of delay differential equations, Ph.D. thesis, University of Wisconsin (1970).Google Scholar
  86. [86]
    D.R. Willé, Experiments in stepsize control for Adams linear multistep methods, Technical Report No. 94-11, Interdisziplinäres Zentrum für Wissenschaftliches Rechnen, University of Heidelberg (1994).Google Scholar
  87. [87]
    D.R. Willé, New stepsize estimators for linear, multistep methods, Technical Report No. 93-47. Interdisziplinäres Zentrum für Wissenschaftliches Rechnen, University of Heidelberg (1993). [Note erratum.]Google Scholar
  88. [88]
    D.R. Willé and C.T.H. Baker, Some issues in the detection and location of derivative discontinuities in delay-differential equations, Technical Report No. 238, University of Manchester (1994).Google Scholar
  89. [89]
    D.R. Willé and C.T.H. Baker, Stepsize control and continuity consistency for state-dependent delay differential equations, J. Comp. Appl. Math 53 (1994) 163–170.MATHCrossRefGoogle Scholar
  90. [90]
    D.R. Willé and C.T.H. Baker, The tracking of derivative discontinuities in systems of delay differential equations, Appl. Num. Math. 9 (1992) 209–222.MATHCrossRefGoogle Scholar
  91. [91]
    D.R. Willé and C.T.H. Baker, DELSOL — a numerical code for the solution of systems of delay differential equations, Appl. Numer. Math. 9 (1992) 223–234.MATHCrossRefGoogle Scholar
  92. [92]
    D.R. Willé and C.T.H. Baker, A short note on the propagation of derivative discontinuities in Volterra-delay integro-differential equations, Technical Report No. 187, University of Manchester (1990).Google Scholar
  93. [93]
    E.M. Wright, On a sequence defined by a non-linear recurrence formula, J. London Math. Soc. 20 (1945) 68–73.MATHCrossRefMathSciNetGoogle Scholar
  94. [94]
    M. Zennaro, Natural continuous extensions of Runge-Kutta methods. Math. Comp. 46 (1986) 119–133.MATHCrossRefMathSciNetGoogle Scholar
  95. [95]
    M. Zennaro,P-stability properties of Runge-Kutta methods for delay differential equations, Numer. Math. 49 (1986) 305–318.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© J.C. Baltzer AG, Science Publishers 1995

Authors and Affiliations

  • Mohamed Farhloul
    • 1
  • Michel Fortin
    • 1
  1. 1.Département de Mathématiques et de StatistiqueUniversité LavalQuébecCanada

Personalised recommendations