Skip to main content
Log in

An algebraic approach to approximate evaluation of a polynomial on a set of real points

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

The previous best algorithm for approximate evaluation of a polynomial on a real set was due to Rokhlin and required of the order ofmu+nu 3 infinite precision arithmetic operations to approximate [on a fixed bounded setX(m) ofm+1 real points] a degreen polynomial\(p\left( z \right) = \sum\nolimits_{i = 0}^n {p_i x^i } \) within the error bound\(2^{ - u} \sum\nolimits_{i = 0}^n {\left| {p_i } \right|} \). We develop an approximation algorithm which exploits algebraic computational techniques and decreases Rokhlin's record estimate toO(mlog2 u+nmin-u, logn}). For logu=o(logn), this result may also be favorably compared with the record boundO(m+n)log2 n) on the complexity of the exact multipoint polynomial evaluation. The new algorithm can be performed in the fields (or rings) generated by the input values, which enables us to decrease the precision of the computations [by using modular (residue) arithmetic] and to simplify our computations further in the case whereu=O(logn). Our algorithm allows NC and simultaneously processor efficient parallel implementation. Because of the fundamental nature of the multipoint polynomial evaluation, our results have further applications to numerical and algebraic computational problems. In passing, we also show a substantial improvement in the Chinese remainder algorithm for integers based on incorporating Kaminski's fast residue computation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.V. Aho, J.E. Hopcroft and J.D. Ullman,The Design and Analysis of Computer Algorithms (Addison-Wesley, MA, 1976).

    Google Scholar 

  2. D. Bini and V.Y. Pan,Matrix and Polynomial Computations (Birkhäuser, Boston, 1994).

    MATH  Google Scholar 

  3. D. Bini and V. Pan, Polynomial division and its computational complexity, J. Complexity 2 (1986) 179–203.

    Article  MATH  MathSciNet  Google Scholar 

  4. A.B. Borodin and I. Munro, Evaluating polynomials at many points, Inf. Proc. Lett. 1 (1971) 66–68.

    Article  MATH  Google Scholar 

  5. G. Dahlquist and A. Björck,Numerical Methods (Prentice-Hall, Englewood Cliffs, NJ, 1974).

    Google Scholar 

  6. G.H. Golub and C.F. van Loan,Matrix Computations (Johns Hopkins University Press, Baltimore, MD, 1989).

    MATH  Google Scholar 

  7. W.G. Horner, Phil. Trans. Roy. Soc. London 109 (1819) 308–335.

    Article  Google Scholar 

  8. M. Kaminski, Linear time algorithm for residue computation and a fast algorithm for division with a sparse divisor. J. ACM 34 (1987) 968–984.

    Article  MathSciNet  Google Scholar 

  9. R. Moenck and A.B. Borodin, Fast modular transforms via division,Conf. Record, IEEE 13th Annual Symp. on Switching and Automata Theory (1972) pp. 90–96.

  10. A.C.R. Newbery, Error analysis for polynomial evaluation, Math. Comp. 28 (1979) 789–793.

    Article  MathSciNet  Google Scholar 

  11. I. Newton,Analysis per Quantitatem Series, vol. 10 (London, 1711); see also D.T. Whiteside (ed.),The Mathematical Papers of Isaac Newton, vol. 2 (Cambridge Univ. Press, 1968).

  12. V.Y. Pan, Methods of computing values of polynomials, Russian Math. Surveys 21 (1966) 105–136.

    Article  Google Scholar 

  13. V. Pan, Fast evaluation and interpolation at the Chebyshev set of points, Appl. Math. Lett. 2 (1989) 255–258.

    Article  MATH  MathSciNet  Google Scholar 

  14. V. Pan, Complexity of computations with matrices and polynomials, SIAM Rev. 34 (1992) 225–262.

    Article  MATH  MathSciNet  Google Scholar 

  15. V.Y. Pan and F.P. Preparata, Supereffective slow-down of parallel computations,Proc. 4th Ann. ACM Symp. on Parallel Algorithms and Architectures (1992) pp. 402–409.

  16. V. Pan, A. Sadikou, E. Landowne and O. Tiga, A new approach to fast polynomial interpolation and multipoint evaluation, Comp. Math. Appl. 25 (1993) 25–30.

    Article  MATH  MathSciNet  Google Scholar 

  17. T.J. Rivlin,The Chebyshev Polynomials, 2nd ed. (Wiley, New York, 1990).

    Google Scholar 

  18. V. Rokhlin, A fast algorithm for the discrete Laplace transformation, J. Complexity 4 (1988) 12–32.

    Article  MATH  MathSciNet  Google Scholar 

  19. A. Schönhage, The fundamental theorem of algebra in terms of computational complexity, unpublished manuscript (1982).

  20. V. Strassen, Die Berechnungskomplexität von elementarsymmetrischen Funktionen und von Interpolationskoeffizienten, Numer. Math. 20 (1973) 238–257.

    Article  MATH  MathSciNet  Google Scholar 

  21. W. Werner, Polynomial interpolation: Lagrange versus Newton, Math. Comp. 43 (1984) 205–217.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pan, V.Y. An algebraic approach to approximate evaluation of a polynomial on a set of real points. Adv Comput Math 3, 41–58 (1995). https://doi.org/10.1007/BF02431995

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02431995

Keywords

Subject classification

Navigation