The Journal of Membrane Biology

, Volume 4, Issue 1, pp 179–192 | Cite as

The mechanism of action of valinomycin on the thylakoid membrane

Characterization of the electric current density
  • W. Junge
  • R. Schmid


Most of the studies devoted to the mechanism by which certain antibiotics increase the ion permeability ofbiological membranes have been carried out on artificialmodel systems. Undoubtedly one of the major reasons for this was that some of the most relevant biological membrane systems are of submicroscopic dimensions and thus inaccessible to the common electrochemical measuring techniques. This holds for the inner membrane systems of chloroplasts, mitochondria, and retinal rods.

Since it is not trivial that a mechanism of action found for a model membrane works as well in a biological one with a much higher structural complexity, it seemed worth-while to study the mechanism of action of ionophorous antibiotics on the above-mentioned biological membranes.

In this paper, a nonelectrochemical method for measuring both the voltage and the current across the inner chloroplast membrane (or thylakoid membrane) is established in extension of earlier work. This method is used to characterize the mode of action of valinomycin on the thylakoid membrane.


Thylakoid Membrane Absorption Change Valinomycin Electric Potential Difference Intrinsic Conductivity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Chappel, I. B., Crofts, A. R. 1966. Ion transport and reversible volume changes of isolated mitochondria.In: The Regulation of Metabolic Processes in Mitochondrion, p. 293. Elsevier Publishing Company, Amsterdam.Google Scholar
  2. Ciani, S. 1965. A rate theory analysis of steady diffusion in a fixed charge membrane.Biophysik 2:368.PubMedGoogle Scholar
  3. Döring, G., Stiehl, H. H., Witt, H. T. 1967. A second chlorophyll reaction in the electron chain of photosynthesis—Registration by the repetitive excitation technique.z. Naturf. 22b:639.Google Scholar
  4. Eisenman, G., Ciani, S. M., Szabo, G. 1968. Some theoretically expected and experimentally observed properties of lipid bilayer membranes containing neutral molecular carriers of ions.Fed. Proc. 27:1289.PubMedGoogle Scholar
  5. Emrich, H. M., Junge, W., Witt, H. T. 1969. An artificial indicator for electric phenomena in biological membranes and interfaces.Naturwissenschaften 56:514.PubMedCrossRefGoogle Scholar
  6. Eyring, H. 1935. The activated complex in chemical reactions.J. Chem. Phys. 3:107.CrossRefGoogle Scholar
  7. Junge, W. 1970. The critical electric potential difference for photophosphorylation.Europ. J. Biochem. 14:582.PubMedCrossRefGoogle Scholar
  8. —, Emrich, H. M., Witt, H. T. 1970. The indication of a light induced electrical field by pigments incorporated in chloroplast membranes.In: Proc. Coral Gables Conf. on the Physical Princ. of Biological Membranes (Dec. 1968), p. 383. Gordon and Breach Science Publishers, New York.Google Scholar
  9. —, Rumberg, B., Schröder, H. 1970. The necessity of an electric potential difference and its use for photophosphorylation in short flash groups.Europ. J. Biochem. 14:575.PubMedCrossRefGoogle Scholar
  10. —, Witt, H. T. 1968. On the ion transport system of photosynthesis—Investigation on a molecular level.Z. Naturf. 23b:244.Google Scholar
  11. Kreutz, W. 1970. X-Ray structure research on the photosynthesis membrane.In: Advances in Botanical Research, Vol. III. R. D. Proston, editor. p. 53, Academic Press, New York.Google Scholar
  12. Lev, A. A., Bujinsky, E. P. 1967. Cation specificity of bimolecular phospholipid membranes containing the valinomycin.Tsitologiya (USSR) 9:102.Google Scholar
  13. Liberman, Ye. A., Topaly, V. P. 1968. Transfer of ions across bimolecular membranes and classification of uncouplers of oxidative phosphorylation.Biophysics (USSR) Engl. Transl. 13:1195.Google Scholar
  14. Markin, V. S., Pastushenko, V. F., Krishtalik, L. I., Liberman, E. A., Topaly, V. P. (1969). Membrane potential and short circuit current in artificial phospholipid membranes in the presence of agents uncoupling oxidative phosphorylation.Biofizika 14:462.PubMedGoogle Scholar
  15. Moore, C., Pressman, B. C. 1964. Mechanism of action of avinomycin on mitochondria.Biochem. Biophys. Res. Commun. 15:562.CrossRefGoogle Scholar
  16. Mueller, P., Rudin, D. O. 1967. Development of K+−Na+ discrimination in experimental bimolecular lipid membranes by macrocyclic antibiotics.Biochem. Biophys. Res. Commun. 26:398.PubMedCrossRefGoogle Scholar
  17. Okki, S. 1969. The electrical capacitance of phospholipid membranes.Biophys. J. 9:1195.CrossRefGoogle Scholar
  18. Pressman, B. C. 1968. Ionophorous antibiotics as models for biological transport.Fed. Proc. 27:1283.PubMedGoogle Scholar
  19. —, Harris, E. J., Jagger, W. S., Johnson, I. H. 1967. Antibiotic-mediated transport of alkali ions across lipid barriers.Proc. Nat. Acad. Sci. 58:1949.PubMedCrossRefGoogle Scholar
  20. Rüppel, H., Witt, H. T. 1969. Measurements of fast reactions by single and repetitive excitations with pulses of electromagnetic radiation.In: Fast Reactions, Methods in Enzymology, Vol. XI. p. 317. Academic Press, New York.Google Scholar
  21. Schliephake, W., Junge, W., Witt, H. T. 1968. Correlation between field formation, proton translocation, and the light reactions in photosynthesis.Z. Naturf. 23b:1571.Google Scholar
  22. Shemyakin, M. M., Ovchinnikov, Yu. A., Ivanov, V. T., Antonov, V. K., Vinogradova, E. I., Shkrob, A. M., Malenkov, G. G., Evstratov, A. V., Laine, I. A., Melnik, E. I., Ryabova, I. D. 1969. Cyclodepsipeptides as chemical tools for studying ionic transport through membranes.J. Membrane Biol. 1:402.CrossRefGoogle Scholar
  23. Tien, H. T., Diana, A. L. 1968. Bimolecular lipid membranes: A review and a summary of some recent studies.Chem. Phys. Lipids 2:55.PubMedCrossRefGoogle Scholar
  24. Witt, H. T., Rumberg, B., Junge, W. 1968. Electron transfer, field changes, proton translocation and phosphorylation in photosynthesis. Coupling in the thylakoid membrane.In: 19. Mosbach-Colloquium (April 1968). p. 262. Springer Verlag, Berlin.Google Scholar
  25. Wolff, C., Buchwald, H.-E., Rüppel, H., Witt, K., Witt, H. T. 1969. Rise time of the light induced electrical field across the function membrane of photosynthesis. Registration by repetitive laser giant pulse photometry.Z. Naturf. 24b:1038.Google Scholar

Copyright information

© Springer-Verlag New York Inc 1971

Authors and Affiliations

  • W. Junge
    • 1
  • R. Schmid
    • 1
  1. 1.Max-Volmer-Institut, I. Institut für Physikalische ChemieTechnische Universität BerlinBerlinGermany

Personalised recommendations