, Volume 8, Issue 4, pp 128–135 | Cite as

Effect of sulfur-containing compounds on the life span of Drosophila

  • Harold R. Massie
  • Trevor Williams


Dietary supplements of glutathione, glutathione precursors and other sulfur-containing molecules were fed to Drosophila. Marginal increases in life span were found for 0.078M pyroglutamic acid (+ 9.1%), 0.01M L-methionine (+ 4.9%), and 0.01M methionine + 1 mg/ml vitamin E (+ 7.3%). 0.05M L-methionine plus 10% casein increased life span by 14.8%. For all other concentrations of the following compounds life span was either unchanged or decreased: N-acetyl-L-cysteine, casein, cysteine, glutamic acid, glutathione, glycine, L-methionine, DL-methionine, DL-methionine sulfone, DL-methionine-DL-sulfoxide, L-pyroglutamic acid (5-oxoproline), sodium bisulfite, thiazolidine, 3,3′-thiodipropionic acid and thioproline (thiazolidine carboxylic acid).


Life Span Bisulfite Thiazolidine Sodium Bisulfite Pyroglutamic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Oeiru, S. and Tanase, I.: Biochemical aspects of aging. II. The amino acids in the biochemical mechanisms of aging rate of processes in man, in Biological Aspects of Aging, edited by Shock, N.W., New York, Columbia Univ. Pres, 1962, pp. 273–288.Google Scholar
  2. 2.
    Oeiru, S. and Tigheciu, M.: Oxidized glutathione as a test of senescence. Gerontologia, 9: 9–17, 1964.CrossRefGoogle Scholar
  3. 3.
    Oeiru, S.: Proteins in development and senescence, in Advances in Gerontological Research, vol. 1, edited by Strehler, B.L., New York, Academic Press, 1964, pp. 23–85.Google Scholar
  4. 4.
    Abraham, E.C., Taylor, J.F., and Lang, C.A.: Influence of mouse age and erythrocyte age on glutathione metabolism. Biochem. J., 174: 819–825, 1978.PubMedGoogle Scholar
  5. 5.
    Hazelton, G.A. and Lang, C.A.: Glutathione contents of tissues in the aging mouse. Biochem. J., 188: 25–30, 1980.PubMedGoogle Scholar
  6. 6.
    Hazelton, G.A. and Lang, C.A.: Glutathione biosynthesis in the aging adult yellow-fever mosquito [Aedes aegypti (Louisville)]. Biochem. J., 210: 289–295, 1983.PubMedGoogle Scholar
  7. 7.
    Hazelton, G.A. and Lang, C.A.: Glutathione S-transferase activities in the yellow-fever mosquito [Aedes aegypti (Louisville)] during growth and aging. Biochem. J., 210: 281–287, 1983.PubMedGoogle Scholar
  8. 8.
    Harman, D.: The free radical theory of aging: The effect of age on serum mercaptan levels. J. Geront., 15: 38–40, 1960.PubMedGoogle Scholar
  9. 9.
    Stohs, S.J., El-Rashidy, F.H., Lawson, T., Kobayashi, R.H., Wulf, B.G., and Potter, J.F.: Changes in glutathione and glutathione metabolizing enzymes in human erythrocytes and lymphocytes as a function of age of donor. Age, 7: 3–7, 1984.Google Scholar
  10. 10.
    Poot, M., Verkerk, A., and Jongkind, J.F.: Glutathione content of cultured human fibroblasts during in vitro ageing. Mech. Age Devel., 27: 315–321, 1984.CrossRefGoogle Scholar
  11. 11.
    Oeiru, S. and Vochitu, E.: The effect of the administration of compounds which contain sulfhydryl groups on the survival rates of mice, rats, and guinea pigs. J. Geront., 20: 417–419, 1965.Google Scholar
  12. 12.
    Harman, D.: Free radical theory of aging: Effect of free radical reaction inhibitors on the mortality rate of male LAF1 mice. J. Geront., 23: 476–482, 1968.PubMedGoogle Scholar
  13. 13.
    Miquel, J. and Economos, A.C.: Favorable effects of the antioxidants sodium and magnesium thiazolidine carboxylate on the vitality and life span of Drosophila and mice. Exp. Geront., 14: 279–285, 1979.CrossRefGoogle Scholar
  14. 14.
    Meister, A. and Anderson, M.E.: Glutathione, in Ann. Rev. Biochem., vol. 52, edited by Snell, E.E., Palo Alto, Ann. Rev. Inc., 1983. pp. 711–760.Google Scholar
  15. 15.
    Freeman, B.A. and Crapo, J.D.: Biology of disease. Free radicals and tissue injury. Lab. Invest., 47: 412–426, 1982.PubMedGoogle Scholar
  16. 16.
    Williamson, J.M., Boettcher, B., and Meister, A.: Intracellular cysteine delivery system that protects against toxicity by promoting glutathione synthesis. Proc. Natl. Acad. Sci., USA, 79: 6246–6249, 1982.PubMedGoogle Scholar
  17. 17.
    Banerjee, S., Deb, C., and Belavady, B.: Effect of scurvy on glutathione and dehydroascorbic acid on guinea pig tissues. J. Biol. Chem., 195: 271–276, 1952.PubMedGoogle Scholar
  18. 18.
    Borsook, H., Davenport, H.W., Jeffreys, C.E.P., and Warner, R.C.: Oxidation of ascorbic acid and its reduction in vitro and in vivo. J. Biol. Chem., 117: 237–279, 1937.Google Scholar
  19. 19.
    McDonald, L.C., Hackney, C.R., and Ray, B.: Enhanced recovery of injured Escherichia coli by compounds that degrade hydrogen peroxide or block its formation. Appl. Environ. Microbiol., 45: 360–365, 1983.PubMedGoogle Scholar
  20. 20.
    Snow, J.T., Finley, J.W., and Kohler, G.O.: A kinetic study of the bisuiphite reduction of methionine sulphoxide to methionine. J. Sci. Fd. Agric., 27: 649–654, 1976.Google Scholar
  21. 21.
    MacKenzie, C.G. and Harris, J.: N-formyl-cysteine synthesis in mitochondria from formaldehyde and L-cysteine via thiazolidine-carboxylic acid. J. Biol. Chem., 227: 393–406, 1957.PubMedGoogle Scholar
  22. 22.
    Benevenga, N.J. and Harper, A.E.: Alleviation of methionine and homocysteine toxicity in the rat. J. Nutr. 93: 44–52, 1967.PubMedGoogle Scholar
  23. 23.
    Bird, P.R.: Effect of nutrient toxicities in animals and man: sulfur, in CRC Handbook Series in Nutrition and Food, section E, vol. 1, edited by Rechcigl, M., Jr., West Palm Beach, Florida, CRC Press, 1978, pp. 153–175.Google Scholar
  24. 24.
    Lippman, R.D.: Chemiluminescent measurement of free radicals and antioxidant molecular-protection insideliving rat-mitochondria. Exp. Geront., 15: 339–351, 1980.CrossRefGoogle Scholar
  25. 25.
    Lippman, R.D.: The prolongation of life: A comparison of antioxidants and geroprotectors versus superoxide in human mitochondria. J. Geront., 36: 550–557, 1981.PubMedGoogle Scholar
  26. 26.
    Kornejewa, T.S.: Die inhibitorische wirkung von L-zystein und methionin auf die amyloidbildung. Zschr. inn. Med., 25: 1084–1087, 1970.Google Scholar
  27. 27.
    Hafeman, D.G. and Hoekstra, W.G.: Protection against carbon tetrachloride-induced lipid peroxidation in the rat by dietary vitamin E, selenium and methionine as measured by ethane evolution. J. Nutr., 107: 656–665, 1977.PubMedGoogle Scholar
  28. 28.
    Rogers, A.E., Lenhart, G., and Morrison, G.: Influence of dietary lipotrope and lipid content on aflatoxin B1, N-2-fluorenylacetamide, and 1,2-dimethylhydrazine carcinogenesis in rats. Cancer Res., 40: 2802–2807, 1980.PubMedGoogle Scholar
  29. 29.
    Farber, E. and Ichinose, H.: The prevention of ethionine-induced carcinoma of the liver in rats by methionine. Cancer Res., 18: 1209–1213, 1958.PubMedGoogle Scholar
  30. 30.
    Massie, H.R. and Aiello, V.R.: The effect of dietary methionine on the copper content of tissues and survival of young and old mice. Exp. Geront., 19: 393–399, 1984.CrossRefGoogle Scholar
  31. 31.
    Hunter, F.E. Jr., Scott, A., Hoffsten, P.E., Gebicki, J.M., Weinstein, J., and Schneider, A.: Studies on the mechanism of swelling, lysis, and disintegration of isolated liver mitochondria exposed to mixtures of oxidized and reduced glutathione. J. Biol. Chem., 239: 614–621, 1964.PubMedGoogle Scholar
  32. 32.
    Glatt, H., Protić-Sabljić, M., and Oesch, F.: Mutagenicity of glutathione and cysteine in the Ames test. Science, 220: 961–962, 1983.PubMedGoogle Scholar
  33. 33.
    Novi, A.M.: Regression of aflatoxin B1-induced hepatocellular carcinomas by reduced glutathione. Science, 212: 541–542, 1981.PubMedGoogle Scholar
  34. 34.
    Miquel, J., Fleming, J., and Economos, A.C.: Antioxidants, metabolic rate and aging in Drosophila. Arch. Gerontol. Geriatr., 1: 159–165, 1982.PubMedCrossRefGoogle Scholar
  35. 35.
    Massie, H.R., Aiello, V.R., and Williams, T.R.: Cadmium: temperature-dependent increase with age in Drosophila. Exp. Geront., 16: 337–341, 1981.CrossRefGoogle Scholar
  36. 36.
    Massie, H.R. and Williams, T.R.: Increased longevity of Drosophila melanogaster with lactic and gluconic acids. Exp. Geront., 4: 109–115. 1979.CrossRefGoogle Scholar

Copyright information

© American Aging Association, Inc. 1985

Authors and Affiliations

  • Harold R. Massie
    • 1
  • Trevor Williams
    • 1
  1. 1.Masonic Medical Research LaboratoryUtica

Personalised recommendations