Advertisement

Applied Microbiology and Biotechnology

, Volume 43, Issue 5, pp 856–860 | Cite as

Debranching of arabinoxylan: properties of the thermoactive recombinant α-L-arabinofuranosidase fromClostridium stercorarium (ArfB)

  • W. H. Schwarz
  • K. Bronnenmeier
  • B. Krause
  • F. Lottspeich
  • W. L. Staudenbauer
Original Paper

Abstract

The genearfB encoding α-L-arabinofuranosidase B of the cellulolytic thermophileClostridium stercorarium was expressed inEscherichia coli from a 2.2-kbEcoRI DNA fragment. The recombinant gene product ArfB was purified by fast-performance liquid chromatography. It has a tetrameric structure with a monomeric relative molecular mass of 52 00. The optima for temperature and pH are 70°C and 5.0 respectively. The enzyme appears to have no metal cofactor requirement and is sensitive to sulfhydryl reagents. It hydrolyzes aryl and alkyl α-L-arabinofuranosides and cleaves arabinosyl side-chains from arabinoxylan (oat-spelt xylan) and from xylooligosaccharides produced by recombinant endoxylanase XynA from the same organism. The identity of the N-terminal amino acid sequences indicates that ArfB corresponds to the major α-arabinosidase activity present in the culture supernatant ofC. stecorarium.

Keywords

Xylose Arabinose Xylobiose Potassium Acetate Xylotriose 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bezalel L, Shoham Y, Rosenberg E (1993) Characterization and delignification activity of a thermostable α-L-arabinofuranosidase fromBacillus stearothermophilus. Appl Microbiol Biotechnol 40:57–62CrossRefGoogle Scholar
  2. Bronnenmeier K, Ebenbichler C, Staudenbauer WL (1990) Separation of the cellulolytic and xylanolytic enzymes ofClostridium stercorarium. J Chromatogr 521:301–310CrossRefGoogle Scholar
  3. Enzyme Nomenclature (1992) NC-IUBMB. Academic Press, New YorkGoogle Scholar
  4. Grabski AC, Jeffries TW (1991) Production, purification, and characterization of β-(1-4)-endoxylanase ofStreptomyces roseiscleroticus. Appl Environ Microbiol 57:987–992Google Scholar
  5. Greve LC, Labavitch JM, Hungate RE (1984) α-L-Arabinofuranosidase fromRuminococcus albus 8: purification and possible role in hydrolysis of Alfalfa cell wall. Appl Environ Microbiol 47:1135–1140Google Scholar
  6. Hespell RB, O'Bryan PJ (1992) Purification and characterization of an α-L-arabinofuranosidase fromButyrivibrio fibrisolvens GS113. Appl Environ Microbiol 58:1082–1088Google Scholar
  7. John MJ, Schmidt B, Schmidt J (1979) Purification and some properties of five endo-1,4-β-d-xylanases and a β-d-xylosidase produced by a strain ofAspergillus niger. Can J Biochem 57:125–134CrossRefGoogle Scholar
  8. Kaji A (1984)l-Arabinosidases. Adv Carbohydr Chem Biochem 42:383–394CrossRefGoogle Scholar
  9. Kormelink FJM, Searle-Van Leeuwen MJF, Wood TM, Voragen AGJ (1991) (1,4)-β-D-Arabinoxylan arabinofuranohydrolase: a novel enzyme in the bioconversion of arabinoxylan. Appl Microbiol Biotechnol 35:231–232Google Scholar
  10. Madden RH (1984) Isolation and characterization ofClostridium stercorarium sp. nov., cellulolytic thermophile. Int J System Bacteriol 33:837–840CrossRefGoogle Scholar
  11. Matte A, Forsberg W (1992) Purification, characterization, and mode of action of endoxylanases 1 and 2 fromFibrobacter succinogenes S85. Appl Environ Microbiol 58:157–168Google Scholar
  12. Poutanen K, Rättö M, Puls J, Viikari L (1987) Evaluation of different microbial xylanolytic systems. J Biotechnol 6:49–60CrossRefGoogle Scholar
  13. Schwarz WH, Bronnenmeier K, Gräbnitz F, Staudenbauer WL (1987) Activity staining of cellulases in polyacrylamide gels containing mixed linkage β-glucans. Anal Biochem 164:72–77CrossRefGoogle Scholar
  14. Schwarz WH, Schimming S, Staudenbauer WL (1988) Degradation of barley β-glucan by endoglucanase C ofClostridium thermocellum. Appl Microbiol Biotechnol 19:25–31CrossRefGoogle Scholar
  15. Schwarz WH, Adelsberger H, Jauris S, Hertel C, Funk B, Staudenbauer WL (1990) Xylan degradation by the thermophileClostridium stercorarium: cloning and expression of xylanase, β-d-xylosidase, and α-l-arabinofuranosidase genes inEscherichia coli. Biochem Biophys Res Commun 170:368–374CrossRefGoogle Scholar
  16. Shao W, Wiegel J (1992) Purification and characterization of a thermostable β-xylosidase fromThermoanaerobacter ethanolicus. J Bacteriol 174:5848–5853Google Scholar
  17. Sedmark JJ, Grossberg SE (1977) A rapid, sensitive assay for protein using Coomassie brilliant blue G250. Anal Biochem 79:544–552CrossRefGoogle Scholar
  18. Wood TM, Bhat KM (1988) Methods for measuring cellulase activities. Methods Enzymol 160:87–112CrossRefGoogle Scholar
  19. Wood MW, McCrae SI (1986) Studies of two low-molecular-weight endo-(1 → 4)-β-d-xylanases constitutively synthesised by the cellulolytic fungusTrichoderma koningii. Carbohydr Res 148:321–330CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • W. H. Schwarz
    • 1
  • K. Bronnenmeier
    • 1
  • B. Krause
    • 1
  • F. Lottspeich
    • 2
  • W. L. Staudenbauer
    • 1
  1. 1.Institut für MikrobiologieTechnische Universität MünchenMünchenGermany
  2. 2.Max-Planck-Institut für BiochemieMartinsriedGermany

Personalised recommendations