Applied Microbiology and Biotechnology

, Volume 43, Issue 5, pp 850–855 | Cite as

Characterization of recombinantE. coli ATCC 11303 (pLOI 297) in the conversion of cellulose and xylose to ethanol

  • N. Padukone
  • K. W. Evans
  • J. D. McMillan
  • C. E. Wyman
Original Paper


This work describes the characterization of recombinantEsherichia coli ATCC 11303 (pLOI 297) in the production of ethanol from cellulose and xylose. We have examined the fermentation of glucose and xylose, both individually and in mixtures, and the selectivity of ethanol production under various conditions of operation. Xylose metabolism was strongly inhibited by the presence of glucose. Ethanol was a strong inhibitor of both glucose and xylose fermentations; the maximum ethanol levels achieved at 37°C and 42°C were about 50 g/l and 25 g/l respectively. Simmultaneous sacharification and fermentation of cellulose with recombinantE. coli and exogenous cellulose showed a high ethanol yield (84% of theoretical) in the hydrolysis regime of pH 5.0 and 37°C. The selectivity of organic acid formation relative to that of ethanol increased at extreme levels of initial glucose concentration; production of succinic and acetic acids increased at low levels of glucose ( <1 g/l), and lactic acid production increased when initial glucose was higher than 100 g/l.


Fermentation Xylose Cellulase Succinic Acid Ethanol Yield 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alterthum F, Ingram LO (1989) Efficient ethanol production from glucose, lactose, and xylose by recombinantEscherichia coli. Appl Environ Microbiol 55:1943–1948Google Scholar
  2. Barbosa M deF S, Beck MJ, Fein JE, Potts D, Ingram LO (1992) Efficient fermentation ofPinus sp. acid hydrolysates by an ethanologenic strain ofEscherichia coli. Appl Environ Microbiol 58:1382–1384Google Scholar
  3. Beall D, Ohta K, Ingram LO (1991) Parametric studies of ethanol production from xylose and other sugars by recombinantEscherichia coli. Biotechnol Bioeng 38:296–303CrossRefGoogle Scholar
  4. Beall DS, Ingram LO, Ben-Bassat A, Doran JB, Fowler DE, Hall RG, Wood BE (1992) Conversion of hydrolysates of corn cobs and hulls into ethanol by recombinantEscherichia coli B containing integrated genes for ethanol production. Biotechnol Lett 14:857–862CrossRefGoogle Scholar
  5. Bothast RJ, Saha BC, Flosenzier AV, Ingram LO (1994) Fermentation of L-arabinose, D-xylose and D-glucose by ethanologenic recombinantKlebsiella oxytoca strain P2. Biotechnol Lett 16:401–406CrossRefGoogle Scholar
  6. Doran JB, Ingram LO (1993) Fermentation of crystalline cellulose to ethanol byKlebsiella oxytoca containing chromosomally IntegratedZymomonas mobilis Genes. Biotechnol, Prog 9:533–538CrossRefGoogle Scholar
  7. Doran JB, Aldrich HC, Ingram LO (1994) Saccharification and fermentation of sugar cane bagasse byKlebsiella oxytoca P2 containing chromosomally integrated genes encoding theZymomonas mobilis ethanol pathway. Biotechnol Bioeng 44:240–247CrossRefGoogle Scholar
  8. Emert GH, Katzen RH (1980) Gulf's cellulose-to-ethanol process. Chemtech 10:610–614Google Scholar
  9. Genencor International (1993) Product data sheet, Laminex BGGoogle Scholar
  10. Ghose TK (1987) Measurement of cellulase activities. Pure Appl Chem 59:257–268Google Scholar
  11. Gottschalk G (1986) Bacterial metabolism. Springer,New York, Berlin Heidelberg, pp 210–280Google Scholar
  12. Hahn-Hägerdal B, Hallborn J, Jeppson H, Olsson L, Skoog K, Walfridsson M (1993) Pentose fermentation to ethanol. In: Saddler JN (ed) Bioconversion of forest and agricultural residues. CAB International, Wallingford, UK pp 231–290Google Scholar
  13. Grohmann K (1993) Simultaneous saccharification and fermentation of cellulosic substrates to ethanol. In: Saddler JN (ed) Bioconversion of forest and agricultural residues. CAB International, Wallingford, UK pp 133–209Google Scholar
  14. Ingram LO, Conway T (1988) Expression of different levels of ethanologenic enzymes fromZymomonas mobilis in recombinant strains ofEscherichia coli Appl Environ Microbiol 54:397–404Google Scholar
  15. Ingram LO, Dombek KM (1989) Effects of ethanol onEscherichia coli. In: van Uden N (ed) Alcohol toxicity in yeasts and bacteria. CRC Press, FlGoogle Scholar
  16. Ingram LO, Conway T, Clark DP, Sewell GW, Preston JF (1987) Genetic engineering of ethanol production inEscherichia coli Appl Environ Microbiol 53:2420–2425Google Scholar
  17. Ingram LO, Conway T, Alterthum F (1991) US Patent no 5 000 000Google Scholar
  18. Jeffries TW (1990) Fermentation ofD-xylose and cellobiose, In: Verachtert H, De Mot R (eds)Yeast: biotechnology and biocatalysis. Dekker, New York, pp 349–394Google Scholar
  19. Lawford H, Rousseau JD (1991) Fuel ethanol from hardwood hemicellulose hydrolyzate by genetically engineeredEscherichia coli B carrying genes fromZymomonas mobilis. Biotechnol Lett 13:191–196CrossRefGoogle Scholar
  20. Lawford H, Rousseau JD (1993) Production of ethanol from pulp mill hardwood and softwood spent sulfite liquors by genetically engineeredE. coli. Appl Biochem Biotechnol 39/40:667–685CrossRefGoogle Scholar
  21. Lawford H, Rousseau JD (1994) Relative rates of sugar utilization by an ethanologenic recombinantEscherichia coli using mixtures of glucose, mannose and xylose. Appl Biochem Biotechnol 45/46:367–381CrossRefGoogle Scholar
  22. Lynd LR, Cushman JH, Nichols RJ, Wyman CE (1991) Fuel ethanol from cellulosic biomass. Science 281:1312–1323Google Scholar
  23. McMillan JD (1993) Xylose fermentation to ethanol: a review. Report no NREL/TP 421-4944, National Renewable Energy Laboratory, Golden, ColoGoogle Scholar
  24. Ohta K, Alterthum F, Ingram LO (1990) Effects of environmental conditions on xylose fermentation by recombinantEscherichia coli. Appl Environ Microbiol 56:463–465Google Scholar
  25. Ohta K, Beall DS, Mejia JP, Shanugham KT, Ingram LO (1991a) Genetic improvement ofEscherichia coli for ethanol production: chromosomal integration ofZymomonas mobilis genes encoding pyruvate decarboxylase and alcohol dehydrogenase. II. Appl Environ Microbiol 57:893–900Google Scholar
  26. Ohta K, Beall DS, Mejia JP, Shanugham KT, Ingram LO (1991b) Metabolic engineering ofKlebsiella oxytoca M5A1 for ethanol production from xylose and glucose. Appl Environ Microbiol 57:2810–2815Google Scholar
  27. Takahashi DF, Carvalhal ML, Alterthum F (1994) Ethanol production from pentoses and hexoses by recombinantEscherichia coli. Biotechnol Lett 16:747–750Google Scholar
  28. Wright JD (1988) Ethanol from biomass by enzymatic hydrolysis. Chem Eng Prog August: 62–74Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • N. Padukone
    • 1
  • K. W. Evans
    • 1
  • J. D. McMillan
    • 1
  • C. E. Wyman
    • 1
  1. 1.Alternative Fuels DivisionNational Renewable Energy LaboratoryGoldenUSA

Personalised recommendations