Communications in Mathematical Physics

, Volume 137, Issue 2, pp 315–357 | Cite as

Characterization of states of infinite boson systems

I. On the construction of states of boson systems
  • Karl-Heinz Fichtner
  • Wolfgang Freudenberg
Article

Abstract

In a previous paper [11] it was shown that to each locally normal state of a boson system one can associate a point process that can be interpreted as the position distribution of the state. In the present paper the so-called conditional reduced density matrix of a normal or locally normal state is introduced. The whole state is determined completely by its position distribution and this function. There are given sufficient conditions on a point processQ and a functionk ensuring the existence of a state such thatQ is its position distribution andk its conditional reduced density matrix. Several examples will show that these conditions represent effective and useful criteria to construct locally normal states of boson systems. Especially, we will sketch an approach to equilibrium states of infinite boson systems. Further, we consider a class of operators on the Fock space representing certain combinations of position measurements and local measurements (observables related to bounded areas). The corresponding expectations can be expressed by the position distribution and the conditional reduced density matrix. This class serves as an important tool for the construction of states of (finite and infinite) boson systems. Especially, operators of second quantization, creation and annihilation operators are of this type. So, independently of the applications in the above context this class of operators may be of some interest.

Keywords

Integral Operator Coherent State Point Process Annihilation Operator Reduce Density Matrix 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bogolyubov, N.N., Bogolyubov, N.N., jr.: Introduction to quantum statistical mechanics (in Russian). Moscow: Nauka 1984Google Scholar
  2. 2.
    Bratteli, O., Robinson, D.W.: Operator algebras and quantum statistical mechanics, I, II. Berlin, Heidelberg, New York: Springer (1979), 1981Google Scholar
  3. 3.
    Cook, J.: The mathematics of second quantization. Trans. Am. Math. Soc.74, 222–245 (1953)MATHCrossRefGoogle Scholar
  4. 4.
    Dixmier, J.: Les algèbres d'opérateurs dans l'espace Hilbertien. Paris: Gauthier-Villars 1969Google Scholar
  5. 5.
    Dobrushin, R.L.: Description of a random field by conditional probabilities and conditions of its regularity. Theory Probab. Appl.13, 197–224 (1968)CrossRefGoogle Scholar
  6. 6.
    Dobrushin, R.L.: Gibbsian random fields. The general case. Funct. Anal. Appl.3, 22–28 (1969)MATHCrossRefGoogle Scholar
  7. 7.
    Emch, G.G.: Algebraic methods in statistical mechanics and quantum field theory. New York, London, Sydney, Toronto: Wiley 1972Google Scholar
  8. 8.
    Fichtner, K.-H., Freudenberg, W.: On a probabilistic model of infinite quantum mechanical particle systems. Math. Machr.121, 171–210 (1985)MATHMathSciNetGoogle Scholar
  9. 9.
    Fichtner, K.-H., Freudenberg, W.: Point processes and normal states of boson systems. Preprint NTZ Leipzig 1986Google Scholar
  10. 10.
    Fichtner, K.-H., Freudenberg, W.: Point processes and states of infinite boson systems. Preprint NTZ Leipzig 1986Google Scholar
  11. 11.
    Fichtner, K.-H., Freudenberg, W.: Point processes and the position distribution of infinite boson systems. J. Stat. Phys.47, 959–978 (1978)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Fichtner, K.-H., Freudenberg, W.: Remarks on stochastic calculus on the Fock space. Proceedings of the 5th Conference on Quantum Probability Trento (1989) (to appear)Google Scholar
  13. 13.
    Fichtner, K.-H., Schreiter, U.: Locally independent boson systems. Preprint BiBos Bielefeld 282, 1987Google Scholar
  14. 14.
    Fichtner, K.-H.: On the position distribution of the ideal Bose gas. Math. Nachrichten (to appear)Google Scholar
  15. 15.
    Fock, V.A.: Konfigurationsraum und zweite Quantelung. Z. Phys.75, 622–647 (1932)MATHCrossRefADSGoogle Scholar
  16. 16.
    Freudenberg, W.: Punktprozesse und Zustände unendlicher Bosonensysteme. Dissertation B, Jena 1986Google Scholar
  17. 17.
    Freudenberg, W.: Characterization of states of infinite boson systems. II. On the determination of states of boson systems. Commun. Math. Phys.137 (1991)Google Scholar
  18. 18.
    Georgii, H.O.: Canonical Gibbs measures. Lecture Notes in Mathematics, vol. 760. Berlin, Heidelberg, New York: Springer 1979Google Scholar
  19. 19.
    Guichardet, A.: Symmetric Hilbert spaces and related topics. Lecture Notes in Mathematics, vol. 231. Berlin, Heidelberg, New York: Springer 1972Google Scholar
  20. 20.
    Kallenberg, O.: On conditional intensities of point processes. Z. Wahrscheinlichkeitstheorie verw. Gebiete41, 205–220 (1978)MATHCrossRefGoogle Scholar
  21. 21.
    Kallenberg, O.: Random measures. Berlin: Akademie-Verlag and London, New York: Academic Press 1983Google Scholar
  22. 22.
    Kato, T.: Perturbation theory for linear operators. Berlin, Heidelberg, New York: Springer 1966Google Scholar
  23. 23.
    Lanford, O.E., Ruelle, D.: Observables at infinity and states with short range correlations in statistical mechanics. Commun. Math. Phys.13, 194–215 (1969)MathSciNetCrossRefADSGoogle Scholar
  24. 24.
    Maasen, H.: Quantum Markov processes on Fock space described by integral kernels. In: Quantum Probability and Applications II. Accardi, L., von Waldenfels, W. (eds.), pp. 361–374. Lecture Notes in Mathematics. Berlin, Heidelberg, New York: Springer 1985Google Scholar
  25. 25.
    Maasen, H.: The construction of continuous dilations by solving quantum stochastic differential equations. Preprint (1984)Google Scholar
  26. 26.
    Matthes, K., Kerstan, J., Mecke, J.: Infinitely divisible point processes. New York: J. Wiley 1978. (Russian edition: Nauka, Moscow 1982)Google Scholar
  27. 27.
    Matthes, K., Warmuth, W., Mecke, J.: Bemerkungen zu einer Arbeit von Nguyen Xuan Xanh und Hans Zessin. Math. Nachr.88, 117–127 (1979)MATHMathSciNetGoogle Scholar
  28. 28.
    Von Neumann, J.: Zur Algebra der Funktionaloperationen und Theorie der normalen Operatoren. Math. Ann.102, 370–427 (1930)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Papangelou, F.: The conditional intensity of general point processes and an application to line processes. Z. Wahrscheinlichkeitstheorie verw. Gebiete28, 207–226 (1974)MATHMathSciNetCrossRefGoogle Scholar
  30. 30.
    Parthasarathy, K.R. Some remarks on the integration of Schrödinger equation using the quantum stochastic calculus. Preprint 1984Google Scholar
  31. 31.
    Rauchenschwandtner, B.: Gibbsprozesse und Papangeloukerne. VWGÖ Wien 1980Google Scholar
  32. 32.
    Reed, M., Simon, B.: Methods of modern mathematical physics 1–3. New York, London: Academic Press 1972, 1975, 1979Google Scholar
  33. 33.
    Ruelle, D.: Statistical mechanics. Rigorous results. New York, Amsterdam: Benjamin 1969Google Scholar
  34. 34.
    Ruelle, D.: Equilibrium statistical mechanics of infinite systems. In: Statistical mechanics and quantum field theory. De Witt, C., Stora, R. (eds.), pp. 215–240. New York, London, Paris: Gordon and Breach 1971Google Scholar
  35. 35.
    Ruelle, D.: Integral representation of states on aC *-algebra. J. Funct. Anal.6, 116–151 (1970)MATHMathSciNetCrossRefGoogle Scholar
  36. 36.
    Thirring, W.: Lehrbuch der Mathematischen Physik, Bd. III/IV. Wien, New York: Springer 1979/80Google Scholar
  37. 37.
    Titulaer, U.M., Glauber, R.J.: Density operators for coherent fields. Phys. Rev.145(4), 1041–1050 (1966)CrossRefADSGoogle Scholar
  38. 38.
    Walkolbinger, A., Eder, G.: A condition ∑λc for point processes. Math. Nachrichten116, 209–232 (1984)Google Scholar
  39. 39.
    Watanabe, S.: Lectures on stochastic differential equations and Malliavin calculus. Tata Institute of Fundamental Research. Berlin, Heidelberg, New York: Springer 1984Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • Karl-Heinz Fichtner
    • 1
  • Wolfgang Freudenberg
    • 1
  1. 1.Mathematische FakultätFriedrich-Schiller-Universität JenaJenaFederal Republic of Germany

Personalised recommendations