Advertisement

Communications in Mathematical Physics

, Volume 137, Issue 2, pp 263–287 | Cite as

A renormalization group analysis of the Kosterlitz-Thouless phase

  • J. Dimock
  • T. R. Hurd
Article

Abstract

We consider a classical Coulomb gas with a short distance cutoff in two dimensions; equivalently a Sine-Gordon field theory. For low temperature β-1 and low activityz the gas is in a multipole phase, the Kosterlitz-Thouless phase. For β>8π andz sufficiently small we give a complete renormalization group analysis for this phase and show that the flow of the effective measures is toward a free field (infrared asymptotic freedom). This should lead to control over the long distance behavior of the theory.

Keywords

Renormalization Group Fourier Mode Infinite Volume Renormalization Group Analysis Renormalization Group Transformation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [BGN] Benfatto, G., Gallavotti, G., Nicolo, F.: The dipole phase in two-dimensional hierarchical Coulomb gas: Analyticity and correlations decay. Commun. Math. Phys.106, 227–288 (1986)MathSciNetADSGoogle Scholar
  2. [BF] Brydges, D., Federbush, P.: Debye screening. Commun. Math. Phys.73, 197–246 (1980)MathSciNetCrossRefADSGoogle Scholar
  3. [BY] Brydges, D., Yau, H.-T.: Grad Φ perturbations of massless Gaussian fields. Commun. Math. Phys.129, 351–392 (1990)MATHMathSciNetCrossRefADSGoogle Scholar
  4. [D] Dimock, J.: The Kosterlitz-Thouless phase in a hierarchical model. J. Phys.A23, 1207–1215 (1990)MATHMathSciNetCrossRefADSGoogle Scholar
  5. [DH] Dimock, J., Hurd, T. R.: A renormalization group analysis of QED4. preprint (1990)Google Scholar
  6. [FS] Fröhlich, J., Spencer, T.: The Kosterlitz-Thouless transition in two-dimensional Abelian spin systems and the Coulomb gas. Commun. Math. Phys.81, 527–602 (1981)_CrossRefADSGoogle Scholar
  7. [GK] Gawedzki, K., Kupiainen, A.: Block spin renormalization group for dipole gas and ∇Ф)4. Ann. Phys.147, 198–243 (1983), and Lattice dipole gas and ∇Ф)4 models at long distances, decay of correlations and scaling limit. Commun. Math. Phys.92, 531–553 (1984)MathSciNetCrossRefADSGoogle Scholar
  8. [KPW] Kappeler, T., Pinn, K., Wieczerkowski, C.: The renormalization group differential equation and the Kosterlitz-Thouless phase in a hierarchical model, preprint (1990)Google Scholar
  9. [KT] Kosterlitz, J. M., Thouless, D. J.: Ordering, metastability and phase transitions in two-dimensional systems. J. Phys.C6, 1181–1203 (1973)CrossRefADSGoogle Scholar
  10. [MP] Marchetti, D. H. U., Perez, J. F.: A hierarchical model exhibiting the Kosterlitz-Thouless fixed point. Phys. Lett.A118, 74–76 (1986), and The Kosterlitz-Thouless transition in two-dimensional Coulomb gases. J. Stat. Phys.55, 141–156 (1989)MathSciNetCrossRefADSGoogle Scholar
  11. [MKP] Marchetti, D. H. U., Klein, A., Perez, J. F.: Power law fall off in the Kosterlitz-Thouless phase of a two-dimensional lattice Coulomb gas. J. Stat. Phys.60, 137Google Scholar
  12. [Y] Yang, W.-S.: J. Stat. Phys.49, 1–32 (1987)MATHCrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • J. Dimock
    • 1
  • T. R. Hurd
    • 2
  1. 1.Department of MathematicsSUNY at BuffaloBuffaloUSA
  2. 2.Department of MathematicsMcMaster UniversityHamiltonCanada

Personalised recommendations