Communications in Mathematical Physics

, Volume 137, Issue 2, pp 231–247 | Cite as

An algorithm for detecting abelian monopoles inSU 2-valued lattice gauge-Higgs systems

  • Anthony V. Phillips
  • David A Stone


We present an algorithm which calculates the monopole number of anSU 2-valued lattice gauge field, together with a lattice Higgs field, on a simplicial lattice of dimension ≧3. The calculation is gauge invariant. The expected value of the monopole density (for a fixed Higgs field) does not depend on the Higgs field.


Intersection Number Adjoint Action Higgs Field Geodesic Triangle Spherical Triangle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arafune, J., Freund, P. G. O., Goebel, C. J.: Topology of Higgs fields. J. Math. Phys.16, 433–437 (1975)MathSciNetGoogle Scholar
  2. 2.
    Atiyah, M.: Magnetic monopoles in hyperbolic space. In: Proc. Int. Colloq. on Vector Bundles, Bombay 1984Google Scholar
  3. 3.
    Donaldson, S. K.: Nahm's equations and the classification of monopoles Commun. Math. Phys.96, 387–407 (1984)MATHMathSciNetCrossRefADSGoogle Scholar
  4. 4.
    Groisser, D.: Integrality of the monopole number inSU(2) Yang-Mills-Higgs theory onR 3. Commun. Math. Phys.93, 367–378 (1984)MATHMathSciNetCrossRefADSGoogle Scholar
  5. 5.
    Hitchin, N.: On the construction of monopoles. Commun. Math. Phys.89, 145–190 (1983)MATHMathSciNetCrossRefADSGoogle Scholar
  6. 6.
    Hurtubise, J.: The asymptotic Higgs field of a monopole. Commun. Math. Phys.97, 381–389 (1985)MATHMathSciNetCrossRefADSGoogle Scholar
  7. 7.
    Kronfeld, A. S., Schierholz, G., Wiese, U.-J.: Topology and dynamics of the confinement mechanism. Nucl. Phys.B293, 461–478 (1987)MathSciNetCrossRefADSGoogle Scholar
  8. 8.
    Lefschetz, S.: Algebraic Topology, American Mathematical Society Colloquium Publications vol. 27. New York: Am. Math. Soc. 1942Google Scholar
  9. 9.
    Nahm, W.: All self-dual monopoles for arbitrary gauge groups. In: Proc. Freiburg Conf. Honerkamp, J. (ed.) NATO ASI Series Vol.B82, 301 (1981)Google Scholar
  10. 10.
    Nomizu, K.: Lie Groups and Differential Geometry. The Mathematical Society of Japan, Tokyo, 1956Google Scholar
  11. 11.
    Phillips, A., Stone, D.: Lattice gauge fields, principal bundles, and the calculation of topological charge. Commun. Math. Phys.103, 599–636 (1986)MATHMathSciNetCrossRefADSGoogle Scholar
  12. 12.
    Phillips, A., Stone, D.: Abelian Monopoles inSU 2-valued lattice gauge-Higgs systems. Nucl. Phys.B (Proc. Suppl.)17, 624–628 (1990)MATHMathSciNetCrossRefADSGoogle Scholar
  13. 13.
    Prasad, M. K., Sommerfield, C. M.: Exact classical solution for the 't Hooft monopole and the Julia-Zee dyon. Phys. Rev. Lett.35, 760–762 (1975)CrossRefADSGoogle Scholar
  14. 14.
    Shrock, R.: Lattice Higgs models. Nucl. Phys.B (Proc. Suppl.)4, 373–389 (1988)CrossRefADSGoogle Scholar
  15. 15.
    Steenrod, N.: Topology of Fibre Bundles. Princeton, N.J.: Princeton 1951Google Scholar
  16. 16.
    Taubes, C. H.: The existence of a non-minimal solution to theSU(2) Yang-Mills-Higgs equation onR 3, Part I. Commun. Math. Phys.86, 257–298 (1982); Part II. Commun. Math. Phys.86, 299–320 (1982)MATHMathSciNetCrossRefADSGoogle Scholar
  17. 17.
    'tHooft, G.: Topology of the gauge condition and confinement phases in non-abelian gauge theories. Nucl. Phys.B190, 455–478 (1981)MathSciNetCrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • Anthony V. Phillips
    • 1
  • David A Stone
    • 2
  1. 1.Mathematics DepartmentSUNY at Stony BrookStony BrookUSA
  2. 2.Mathematics DepartmentBrooklyn College of CUNYBrooklynUSA

Personalised recommendations