Skip to main content
Log in

Propyl gallate delays senescence in Drosophila melanogaster

  • Published:
AGE Aims and scope Submit manuscript

Abstract

The effect of propyl gallate (PGL) on life span in Drosophila was investigated. Four groups of flies were supplemented as follows: group 1, no PGL; group 2, no PGL supplement until 28 days followed by 0.3% PGL for remaining life span; group 3, 0.3% PGL from 7 days to 28 days, then none for remaining life span; and group 4, 0.3% PGL from 7 days until death. In all cases, PGL significantly increased mean life span. The largest increase in mean life span (34.2%) was in the group receiving PGL for the entire life span (group 4). Increases of 14.6% and 14.7% were measured in groups 2 and 3, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Harman, D.: Aging: A theory based on free radical and radiation chemistry. J. Gerontol. 11: 298–300, 1956.

    PubMed  CAS  Google Scholar 

  2. Harman, D.: Role of free radicals in mutation, cancer, aging and the maintenance of life. Rad. Res., 16: 753–763, 1962.

    CAS  Google Scholar 

  3. Harman, D.: The biologic clock: The mitochondria? J. Am. Geriatr. Soc., 20: 145–147, 1972.

    PubMed  CAS  Google Scholar 

  4. Harman, D.: The aging process. Proc. Natl. Acad. Sci. USA, 78: 7124–7128, 1981.

    PubMed  CAS  Google Scholar 

  5. Fleming, J.E., Miquel, J., Cottrell, S.F., Yengoyan, L.S., and Economos, A.C.: Is cell aging caused by respiration-dependent injury to the mitochondrial genome? Gerontol. 28: 44–53, 1982.

    CAS  Google Scholar 

  6. Harman, D.: Free radical theory of aging: Nutritional implications. Age, 1: 143–150, 1978.

    Google Scholar 

  7. Miquel, J., Fleming, J.E. and Economos, A.C.: Antioxidants, mitochondrial respiration and aging in Drosophila. Arch. Gerontol. Geriatr., 1: 349–363, 1982.

    Article  PubMed  Google Scholar 

  8. Pearl, R.: The Rate of Living. London: University of London Press, 1928.

    Google Scholar 

  9. Alpatov, W.W. and Pearl, R.: Experimental studies on the duration of life. XII. Influence of temperature during the larval period and adult life on the duration of life of the imago of Drosophila melanogaster. Am. Nat., 63: 37–67, 1929.

    Article  Google Scholar 

  10. Harman, D. Free radical theory of aging: Role of free radicals in the origination and evolution of life, aging, and disease processes, in Free Radicals, Aging, and Degenerative Diseases, edited by Johnson, J.E. Jr., Walford, R., Harman, D. and Miquel, J. New York, Alan R. Liss, 1986, pp. 3–49.

    Google Scholar 

  11. Fridovich, I.: Superoxide and evolution. Horizons in Biochem. Biophys., 1: 1–37, 1974.

    CAS  Google Scholar 

  12. Puig-Musset, P.: Oxigeno(s), oikos-tau. Barcelona (Spain): S.A.-Ediciones, 1976.

    Google Scholar 

  13. Gerschman, R.: Biological Effects of Oxygen in the Animal Organism, edited by F. Dickens and E. Nell. New York, McMillan, 1964, pp. 475–492.

    Google Scholar 

  14. Haugaard, N.: Cellular mechanisms of oxygen toxicity. Physiol. Rev., 48: 311–373, 1968.

    PubMed  CAS  Google Scholar 

  15. Menzel, D.: Ann. Rev. Pharmacol., 10: 379–394, 1970.

    Article  PubMed  CAS  Google Scholar 

  16. Pryor, W.A.: Free radical reactions and their importance in biochemical systems. Fed. Proc., 32: 1862–1869, 1973.

    PubMed  CAS  Google Scholar 

  17. Pryor, W.A.: The role of free radical reactions in biological systems, in Free Radicals in Biology, Vol. 1, edited by Pryor, W.A., New York, Academic Press, 1976, pp. 1–49.

    Google Scholar 

  18. Fridovich, I.: The biology of oxygen radicals. Science 201: 875–880, 1978.

    PubMed  CAS  Google Scholar 

  19. Leibovitz, B.E., and Siegel, B.V. Aspects of free radical reactions in biological systems: Aging. J. Gerontol., 35: 45–56, 1980.

    PubMed  CAS  Google Scholar 

  20. Gerschmann, R. The Biological Effects of Increased Oxygen Tension in Man’s Dependence on the Earthly Atmosphere, in Proceedings of the 1958 Int. Symp. on Submarine and Space Medicine, edited by Schaeffer, K.S., New York, McMillan, 1962, pp. 174–179.

    Google Scholar 

  21. Sohal, R.S., Farmer, K.J., Allen, R.G., and Cohen, N.R.: Effect of age on oxygen consumption, superoxide dismutase, catalase, glutathione, inorganic peroxides and chloroform-soluble antioxidants in the adult male housefly, Musca domestica. Mech. Age. Dev., 24: 185–195, 1983.

    Article  Google Scholar 

  22. Massie, H.R., Aiello, V.R., and Williams, T.R. Loss of mitochondrial DNA with aging in Drosophila melanogaster. Gerontologia, 21: 231–238, 1975.

    Article  PubMed  CAS  Google Scholar 

  23. Gehan, E.A. and Siddiqui, M.M.: Simple regression models for survival time studies. J. Am. Stat. Assoc., 344(68): 848–845, 1973.

    Article  Google Scholar 

  24. Thoman, D.R. and Bain, L.J.: Two sample tests in the Weibull distribution. Technometrics, 4(11): 805–815, 1969.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Ruddle, D.L., Yengoyan, L.S., Miquel, J. et al. Propyl gallate delays senescence in Drosophila melanogaster . AGE 11, 54–58 (1988). https://doi.org/10.1007/BF02431773

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02431773

Keywords

Navigation