Free radical theory of aging: Beneficial effect of antioxidants on the life span of male NZB mice; role of free radical reactions in the deterioration of the immune system with age and in the pathogenesis of systemic lupus erythematosus

Abstract

Autoimmune manifestations increase with age. Tolerance to self-antigens appears to be actively maintained mainly by T-suppressor cells derived from radio-sensitive precursors. Since endogenous free radical reactions seem to increase with age the associated increase in autoimmunity could be due, at least in part, to a disproportionate decrease in suppressor cell function, as compared to the other cells of the immune system. This possibility was evaluated using New Zealand black (NZB) mice; this strain loses T-cell suppressor function early in life and develops autoimmune manifestations which mimic those seen in old mice of normal strains.

Addition of 0.25%w (percent by weight) α-tocopheral acetate, 0.25%w Santoquin (a quinoline derivative), or 1.0%w NaH2PO2 to the diet of NZB male mice, starting shortly after weaning, increased the average life span by 7.1, 32.1 and 1.2 percent, respectively, by comparison with the control life span of 16.8 months. These data support the above-suggested explanation for the rise in autoimmunity with age.

The NZB mouse serves as a model for systemic lupus erythematosus (SLE). The present study led to the suggestion that the basic defect in SLE is an abnormality(s) which enhances the tendency for nuclear antigens to be formed from nuclear components by a free radical pathway. The nuclear antigens in turn give rise to immune complex disease. Thus the beneficial effect of antioxidants in the present study can be attributed to a decrease in the rate of: 1) formation of nuclear antigens, 2) free radical damage initiated by aggregating neutrophils, and 3) free radical reaction-induced loss of T-suppressor cell function with age owing to a reduction in damage from both “normal” endogenous free radicals and those of neutrophil origin.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Kay, M. B. K., and Makinodan, T.: Immunobiology of aging: evaluation of current status. Clin. Immunol. Immunopathol., 6: 394–413, 1976.

    PubMed  CAS  Article  Google Scholar 

  2. 2.

    Meredith, P., and Walford, R. L.: Autoimmunity, histocompatibility, and aging. Mech. Ageing Dev., 9: 61–77, 1979.

    PubMed  CAS  Article  Google Scholar 

  3. 3.

    Harman, D.: Free radical theory of aging: nutritional implications. Age, 1: 145–152, 1978.

    Google Scholar 

  4. 4.

    Harman, D.: The free radical theory of aging: effect of age on serum copper levels. J. Gerontol., 20: 151–153, 1965.

    PubMed  CAS  Google Scholar 

  5. 5.

    Harman, D.: The free radical theory of aging: the effect of age on serum mercaptan levels. J. Gerontol., 15: 38–40, 1960.

    PubMed  CAS  Google Scholar 

  6. 6.

    Leto, S., Yiengst, M. J., and Barrows, Jr., C. H.: The effect of age and protein deprivation on the sulphydryl content of serum albumin. J. Gerontol., 25: 4–8, 1970.

    PubMed  CAS  Google Scholar 

  7. 7.

    Tam, C. F., and Walford, R. L.: Cyclic nucleotide levels in resting and mitogen-stimulated spleen cell suspensions from young and old mice. Mech. Ageing Dev., 7: 309–320, 1978.

    PubMed  CAS  Article  Google Scholar 

  8. 8.

    Mittal, C. K., and Murad, F.: Activation of guanylate cyclase by superoxide dismutase and hydroxyl radical: a physiological regulator of guanosine-3′, 5′-monophosphate. Proc. Natl. Acad. Sci. U.S.A., 74: 4360–4364, 1977.

    PubMed  CAS  Google Scholar 

  9. 9.

    Graff, G., Stephenson, J. H., Winget, R. R., and Goldberg, N. D.: Oxidative activation of guanylate cyclase by prostaglandin endoperoxides and fatty acid hydroperoxides. Lipids, 14: 212–228, 1979.

    CAS  Google Scholar 

  10. 10.

    Goldberg, N. D., and Haddox, M. K.: Cyclic GMP metabolism and involvement in biological regulation. Ann. Rev. Biochem., 46: 823–896, 1977.

    PubMed  CAS  Article  Google Scholar 

  11. 11.

    DeRubertis, F. R., and Craven, P. A.: Calcium-independent modulation of cyclic GMP and activation of guanylate cyclase by nitrosamines. Science, 193: 897–899, 1976.

    PubMed  CAS  Google Scholar 

  12. 12.

    Harman, D., Heidrick, M. L., and Eddy, D. E.: Free radical theory of aging: effect of free radical reaction inhibitors on the immune response. J. Amer. Geriatrics Soc., 25: 400–407, 1977.

    CAS  Google Scholar 

  13. 13.

    Eardley, D. D., Hugenberger, J., McVay-Boudreau, L., Shen, F. W., Gershon, R. K., and Cantor, H.: Immunoregulatory circuits among T-cell sets. I. T-helper cells induce other T-cell sets to exert feedback inhibition. J. Exper. Med., 147: 1106–1115, 1978.

    CAS  Article  Google Scholar 

  14. 14.

    Cantor, H., McVay-Boudreau, L., Hugenberger, J., Naidorf, K., Shen, F. W.,and Gershon, R. K.: Immunoregulatory circuits among T-cell sets. II. Physiologic role of feedback inhibition in vivo: absence in NZB mice. J. Exper. Med., 147: 1116–1125, 1978.

    CAS  Article  Google Scholar 

  15. 15.

    Cantor, H., and Gershon, R. K.: Immunological circuits: cellular composition. Fed. Proc., 38: 2058–2064, 1979.

    PubMed  CAS  Google Scholar 

  16. 16.

    Reinherz, E. L., Robertson, P, Rappeport, J., Rosen, F. S., and Schlossman, S. F.: Aberrations of suppressor T-cells in human graft-versus-host-disease. New Engl. J. Med., 300: 1061–1068, 1979.

    PubMed  CAS  Article  Google Scholar 

  17. 17.

    Eisenthal, A., Nachtigal, D., and Feldman, M.: Studies of allospecific suppressor cells in culture, in Adv. Exper. Med. Biol., Vol. 114, Function and Structure of the Immune System, edited by Müller-Ruchholz, W., and Müller-Hermelink, H. R., New York, Plenum Press, 1979, pp. 301–306.

    Google Scholar 

  18. 18.

    Sinclair, N. R. St. C., Lees, R. K., Missiuna, P. C., and Fung, F. V.: In vitro generation of cells capable of suppressing in vitro cell-mediated immunity, in Suppressor Cells in Immunity, edited by Singhal, S. K.,and Sinclair, N. R. St. C., London, Ontario, Western Ontario Press, 1975, pp. 42–49.

    Google Scholar 

  19. 19.

    Batchelor, J. R.: Summing-up: immunological tolerance (suppression/deletion), in Adv. Exper. Med. Biol., Vol. 114: Function and Structure of the Immune System, edited by Muller-Ruchholz, W., and Muller-Hermelink, H. K., New York, Plenum Press, 1979, pp. 363–365.

    Google Scholar 

  20. 20.

    Anderson, R. E., and Lefkovits, I.: In vitro evaluation of radiation-induced augmentation of the immune response. Amer. J. Pathol., 97: 456–472, 1979.

    CAS  Google Scholar 

  21. 21.

    Howie, J. B., and Helyer, B. J.: The immunology and pathology of NZB mice, in Adv. in Immunology, Vol. 9, edited by Dixon, Jr., F. J., and Kunkel, H. G., New York, Academic Press, 1968, pp. 215–266.

    Google Scholar 

  22. 22.

    Talal, N., and Steinberg, A. D.: The pathogenesis of autoimmunity in New Zealand black mice. Curr. Top. Microbiol. Immunol., 64: 79–103, 1974.

    PubMed  CAS  Google Scholar 

  23. 23.

    Howie, J. B., and Helyer, B. J.: Autoimmune disease in mice. Ann. New York Acad. Sci., 124: 167–177, 1965.

    CAS  Google Scholar 

  24. 24.

    Bielschowsky, M., Helyer, B. J., and Howie, J.B.: Spontaneous hemolytic anemia in mice of the NZB/BL strain. Proc. Univ. Otago Med. Sch., 37: 9–11, 1959.

    Google Scholar 

  25. 25.

    Fernandes, G., Yunis, E. J., Smith, J., and Good, R. A.: Dietary influence on breeding behavior, hemolytic anemia, and longevity in NZB mice. Proc. Soc. Exper. Biol. Med., 139: 1189–1196, 1972.

    CAS  Google Scholar 

  26. 26.

    Ohsugi, Y., Nakano, T., Hata, S.-I., Niki, R., Matsuno, T., Nishii, Y., and Takagaki, Y.: N-(2-carboxyphenyl)-4-chloroanthranilic acid disodium salt: prevention of autoimmune kidney disease in NZB/NZW F, hybrid mice. J. Pharm. Pharmac., 30: 126–128, 1978.

    CAS  Google Scholar 

  27. 27.

    Harman, D., Eddy, D. E., and Noffsinger, J.: Free radical theory of aging: inhibition of amyloidosis in mice by antioxidants; possible mechanism. J. Amer. Geriatrics Soc., 24: 203–210, 1976.

    CAS  Google Scholar 

  28. 28.

    Gupto, S., and Good, R. A.: Subpopulations of human T-lymphocytes. II. Effect of thymopoietin, corticosteroids, and irradiation. Cell. Immunol., 34: 10–18, 1977.

    Article  Google Scholar 

  29. 29.

    Shek, P. N., Waltenbaugh, C., and Coons, A.H.: Effect of colchicine on the antibody response. J. Exper. Med., 147: 1228–1233, 1978.

    CAS  Article  Google Scholar 

  30. 30.

    Kishimoto, S., Tomino, S., Mitsuya, H.,and Fujiwara, H.: Age-related changes in suppressor functions of human T-cells. J. Immunol., 123: 1586–1593, 1979.

    PubMed  CAS  Google Scholar 

  31. 31.

    Hirokawa, K., and Makinodan, T.: Thymic involution: effect on T-cell differentiation. J. Immunol., 114: 1659–1664, 1975.

    PubMed  CAS  Google Scholar 

  32. 32.

    Klassen, L. W., Krakauer, R. S., and Steinberg, A. D.: Selective loss of suppressor cell function in New Zealand mice induced by NTA. J. Immunol., 119: 830–837, 1977.

    PubMed  CAS  Google Scholar 

  33. 33.

    Shirai, T., Hayakawa, K., Okumura, K., and Tada, T.: Differential cytotoxic effect of natural thymocytotoxic autoantibody of NZB mice on functional subsets of T-cells. J. Immunol., 120: 1924–1929, 1978.

    PubMed  CAS  Google Scholar 

  34. 34.

    Sakane, T., Steinberg, A. D., Reeves, J. P., and Green, I.: Studies of immune function of patients with systemic lupus erythematosus. J. Clin. Invest., 63: 954–965, 1979.

    PubMed  CAS  Google Scholar 

  35. 35.

    Manny, N., Datta, S. K., Schwartz, R. S.: Synthesis of IgM by cells of NZB and SWR mice and their crosses. J. Immunol., 122: 1220–1227, 1979.

    PubMed  CAS  Google Scholar 

  36. 36.

    Primi, D., Hammarstrom, L., and Smith, C. I. E.: Genetic control of lymphocyte suppression. I. Lack of suppression in aged NZB mice is due to a B-cell defect. J. Immunol., 121: 2241–2243, 1978.

    PubMed  CAS  Google Scholar 

  37. 37.

    Moutsopoulos, H. M., Boehn-Truitt, M., Kassan, S. S.: Demonstration of activation of B-lymphocytes in New Zealand black mice at birth by an immunoradiometric assay for murine IgM. J. Immunol., 119: 1639–1644 1977.

    PubMed  CAS  Google Scholar 

  38. 38.

    Parker, C. W., Kelly, J. P., Falkenhein, S. F., and Huber, M. G.: Release of arachidonic acid from human lymphocytes in response to mitogenic lectins. J. Exper. Med., 149: 1487–1503, 1979.

    CAS  Article  Google Scholar 

  39. 39.

    Passwell, J. H., Dayer, J. M., and Merler, E.: Increased prostaglandin production by human monocytes after membrane receptor activation. J. Immunol., 123: 115–120, 1979.

    PubMed  CAS  Google Scholar 

  40. 40.

    Metzger, Z., Hoffeld, J. T., and Oppenheim, J. J.: Macrophage-mediated suppression. I. Evidence for participation of both hydrogen peroxide and prostaglandins in suppression of murine lymphocyte proliferation. J. Immunol., 124: 983–988, 1980.

    PubMed  CAS  Google Scholar 

  41. 41.

    Oliver, J. M., Albertini, D. F., and Berlin, R. D.: Effects of glutathione-oxidizing agents on microtubule assembly and microtubule-dependent surface properties of human neutrophils. J. Cell Biol., 71: 921–932, 1976.

    PubMed  CAS  Article  Google Scholar 

  42. 42.

    Storer, J. B.: Acute responses to ionizing radiation, in Biology of the Laboratory Mouse, Second Edition, edited by Green, E. L., New York, McGraw-Hill Book Co., 1966, pp. 427–446.

    Google Scholar 

  43. 43.

    Jarcho, S.: The clinical features of systemic lupus erythematosus. J. Mt. Sinai Hosp., N. Y., 26: 278–289, 1959.

    CAS  Google Scholar 

  44. 44.

    Bach, J.-F.: Pathology of immune complexes and systemic lupus erythematosus, in Immunology, edited by Bach, J.-F., New York, John Wiley & Sons, 1978, pp. 699–730.

    Google Scholar 

  45. 45.

    Lupus Erythematosus, Second Edition, edited by Dubois, E. L., Los Angeles, University Southern California Press, 1974.

    Google Scholar 

  46. 46.

    Miller, K. B., and Swartz, R. S.: Familial abnormalities of suppressor-cell function in systemic lupus erythematosus. New Engl. J. Med., 301: 803–809, 1979.

    PubMed  CAS  Article  Google Scholar 

  47. 47.

    Todd, P.: UV-induced DNA to protein cross-linking in mammalian cells, in Aging, Carcinogenesis, and Radiation Biology, edited by Smith, K. C., New York, Plenum Press, 1978, pp. 83–104.

    Google Scholar 

  48. 48.

    Cram, D. L., Epstein, J. H., and Tuffanelli, D.L.: Lupus erythematosus and porphyria. Arch. Dermatol., 108: 779–784, 1973.

    PubMed  CAS  Article  Google Scholar 

  49. 49.

    Thompson, R. H. S., and Watson, D.: Serum copper levels in pregnancy and pre-eclampsia. J. Clin. Path., 2: 193–196, 1949.

    Google Scholar 

  50. 50.

    Lahey, M. E., Gubler, C. J., Cartwright, G. E., and Wintrobe, M. M.: Studies in copper metabolism. VII. Blood copper in pregnancy and various pathologic states. J. Clin. Invest., 32: 329–339, 1953.

    PubMed  CAS  Google Scholar 

  51. 51.

    Smith, Jr., J. D., and Brown, E. D.: Effects of oral contraceptive agents on trace element metabolism-a review, in Trace Elements in Human Health and Disease. Vol. 2, Essential and Toxic Elements, edited by Prasad, A. S. and Oberleas, New York, Academic Press, 1976, pp. 315–345.

    Google Scholar 

  52. 52.

    Stokes, T., and Wynn, V.: Serum lipids in women on oral contraceptives. Lancet, 2: 677–681, 1971.

    PubMed  CAS  Article  Google Scholar 

  53. 53.

    Chapel, T. A., and Burns, R. E.: Oral contraceptives and exacerbation of lupus erythematosus. Amer. J. Obstet. Gynecol., 110: 366–369, 1971.

    CAS  Google Scholar 

  54. 54.

    Boyle, Jr., G. G., Friedlaender, M. H., and Smith, C. K.: Rheumatic symptoms and serological abnormalities induced by oral contraceptives. Lancet, 1: 323–326, 1969.

    Article  Google Scholar 

  55. 55.

    Tan, E. M.: Drug-induced autoimmune disease. Fed. Proc., 33: 1894–1897, 1974.

    PubMed  CAS  Google Scholar 

  56. 56.

    Nelson, S. D., Mitchell, J. R., Timbrell, J. A., Snodgrass, W. R., and Corcoran, III, G. B.: Isoniazid and iproniazid: activation of metabolites to toxic intermediates in man and rat. Science, 1973: 901–903, 1976.

    Google Scholar 

  57. 57.

    Mitchell, J. R., Nelson, S. D., Snodgrass, W. R., and Timbrell, J. A.: Metabolic activation of hydrazines to highly reactive hepatoxic intermediates, in Biological Reactive Intermediates, edited by Jollow, D. J., Kocsis, J. J., Snyder, R., and Vainio, H., New York, Plenum Press, 1977, pp. 271–277.

    Google Scholar 

  58. 58.

    Dybing, E., Mitchell, J. R., Nelson, S. D.,and Gillette, J. R.: Metabolic activation of methyldopa by cytochrome P450-generated superoxide anion, in Biological Reactive Intermediates, edited by Jollow, D. J., Kocsis, J. J., Snyder, R., and Vainio, H., New York, Plenum Press, 1977, pp. 167–172.

    Google Scholar 

  59. 59.

    Harris, J. R.: The biochemistry and ultrastructure of the nuclear envelope. Biochem. Biophys. Acta, 515: 55–104, 1978.

    PubMed  CAS  Google Scholar 

  60. 60.

    Bresnick, E., Vaught, J. B., Chuang, A. H. L., Stoming, T. A., Bockman, D., and Mukhtar, H.: Nuclear aryl hydrocarbon hydroxylase and interaction of polycyclic hydrocarbons with nuclear components. Arch. Biochem. Biophys., 181: 257–269, 1977.

    PubMed  CAS  Article  Google Scholar 

  61. 61.

    Mukhtar, H., Elmamlouk, T. H., and Bend, J.R.: Epoxide hydrase and mixed-function oxidase activities of rat liver nuclear membranes. Arch. Biochem. Biophys., 192: 10–21, 1979.

    PubMed  CAS  Article  Google Scholar 

  62. 62.

    Mellors, R. C., Shirai, T., Aoki, T., Huebner, R. J., and Krawczynski, K.: Wild-type gross leukemia virus and the pathogenesis of the glomerulonephritis of New Zealand mice. J. Exper. Med., 133: 113–132, 1971.

    CAS  Article  Google Scholar 

  63. 63.

    Levy, J. A.: Autoimmunity and neoplasia: the possible role of the C-type viruses. Amer. J. Clin. Pathol., 62: 258–280, 1974.

    CAS  Google Scholar 

  64. 64.

    Phillips, P. E.: The virus hypothesis in systemic lupus erythematosus. Ann. Inter. Med., 83: 709–715, 1975.

    CAS  Google Scholar 

  65. 65.

    Panem, S., Ordonez, N. G., Kirstein, W. H., Katz, A. I., and Spargo, B. H.: C-type virus expression in systemic lupus erythematosus. New Engl. J. Med., 295: 470–475, 1976.

    PubMed  CAS  Article  Google Scholar 

  66. 66.

    Weiss, R. A.: Why cell biologists should be aware of genetically transmitted viruses. Natl. Cancer Inst. Monograph., 48: 183–189, 1978.

    Google Scholar 

  67. 67.

    Igel, H. J. Huebner, R. J., Turner, H. C., Kotin, P., and Falk, H. L.: Mouse leukemia virus activation by chemical carcinogens. Science. 166: 1624–1626, 1969.

    PubMed  CAS  Google Scholar 

  68. 68.

    Haran-Ghera, N.: A leukemogenic filtrable agent from chemically-induced lymphoid leukemia in C57BL mice. Proc. Soc. Exper. Biol. Med., 124: 697–699, 1967.

    CAS  Google Scholar 

  69. 69.

    Bresnihan, B., and Jasin, H. E.: Suppressor function of peripheral blood mononuclear cells in normal individuals and in patients with systemic lupus erythematosus. J. Clin. Invest., 59: 106–116, 1977.

    PubMed  CAS  Google Scholar 

  70. 70.

    Reddy, A. L., Fialkow, P. J., and Salo, A.: Ultraviolet radiation-induced chromosomal abnormalities in fetal fibroblasts from New Zealand black mice. Science, 201: 920–922, 1978.

    PubMed  CAS  Google Scholar 

  71. 71.

    Theofilopoulos, A. N., and Dixon, F. J.: The biology and detection of immune complexes. Adv. Immunol., 28: 89–220, 1979.

    PubMed  CAS  Article  Google Scholar 

  72. 72.

    Levinsky, R. J., Cameron, J. S., and Soothill, J. F.: Serum immune complexes and disease activity in lupus nephritis. Lancet, 1: 564–567, 1967.

    Google Scholar 

  73. 73.

    Porter, R. R., and Reed, B. M.: The biochemistry of complement. Nature, 275: 699–704, 1978.

    PubMed  CAS  Article  Google Scholar 

  74. 74.

    O’Flaherty, J. T., and Ward, P. A.: Chemotactic factors and the neutrophil. Seminars in Hematol., 16: 163–174, 1979.

    CAS  Google Scholar 

  75. 75.

    Sissons, J. G. P., Liebowitch, J., Amos, N., and Peters, D. K.: Metabolism of the fifth component of complement, and its relation to metabolism of the third component, in patients with complement activation. J. Clin. Invest., 59: 704–715, 1977.

    PubMed  CAS  Google Scholar 

  76. 76.

    Camussi, G., Tetta, C., Bussolino, F., Cappio, F. C., Coda, R., Masera, C., and Segolini, G.: Mediators of immune complex-induced aggregation of polymorphonuclear neutrophils. I. C5a anaphylatoxin, neutrophil cationic proteins and their cleavage fragments. Intern. Arch. Allergy Appl. Immunol., 62: 1–15, 1980.

    CAS  Google Scholar 

  77. 77.

    O’Flaherty, J. T., Kreutzer, D. L., and Ward, P. A.: Effect of prostaglandins E1, E2, and F2a on neutrophil aggregation. Prostaglandins, 17: 201–210, 1979.

    PubMed  CAS  Article  Google Scholar 

  78. 78.

    Jacob, H. S., Craddock, P. R., Hammerschmidt, D. E., and Moldow, C. F.: Complement-induced granulocyte aggregation: an unsuspected mechanism of disease. New Engl. J. Med., 302: 789–794, 1980.

    PubMed  CAS  Article  Google Scholar 

  79. 79.

    Craddock, P. R., Hammerschmidt, D. E., Moldow, C. F., Yamada, O., and Jacob, H. S.: Granulocyte aggregation as a manifestation of membrane interactions with complement: possible role in leukocyte margination, microvascular occlusion, and endothelial damage. Seminars in Hematol., 16: 140–147, 1979.

    CAS  Google Scholar 

  80. 80.

    Johnston, Jr., R. B., and Lehmeyer, J. E.: Elaboration of toxic oxygen by-products by neutrophils in a model of immune complex disease. J. Clin. Invest., 57: 836–841, 1976.

    PubMed  CAS  Google Scholar 

  81. 81.

    Sacks, T., Moldow, C. F., Craddock, P.R., Bowers, T.K., and Jacob, H.S.: Oxygen radicals mediate endothelial cell damage by complement-stimulated granulocytes: an in vitro model of immune vascular damage. J. Clin. Invest., 61: 1061–1067, 1978.

    Article  Google Scholar 

  82. 82.

    Hammerschmidt, D. E., White, J. C., Craddock, P. R., and Jacob, H. S.: Corticosteroids inhibit complement-induced granulocyte aggregation. J. Clin. Invest., 63: 798–803, 1979.

    PubMed  CAS  Google Scholar 

  83. 83.

    DeChatelet, L. R., Shirley, P. S., McPhall, L. C., Huntley, C. C., Muss, H. B., and Bass, D. A.: Oxidative metabolism of the human eosinophil. Blood, 50: 525–535, 1977.

    PubMed  CAS  Google Scholar 

  84. 84.

    Brown, B. R., and Sipes, I. G.: Biotransformation and hepatotoxicity of halothane. Biochem. Pharmacol., 26: 2091–2094, 1977.

    PubMed  CAS  Article  Google Scholar 

  85. 85.

    Vergani, D., Mieli-Vergani, G., Alberti, A., Neuberger, J., Eddleston, A.L.W.F., Davis, M., and Williams, R.: Antibodies to the surface of halothane-altered rabbit hepatocytes in patients with severe halothane-associated hepatitis. New Engl. J. Med., 303: 66–71, 1980.

    PubMed  CAS  Article  Google Scholar 

  86. 86.

    Smith, C. I., Cooksley, W. G. E., and Powell, L. W.: Cell-mediated immunity to liver antigen in toxic liver injury. Clin. Exper. Immunol., 39: 607–617, 1980.

    CAS  Google Scholar 

  87. 87.

    Gordon, II, B. L., and Keenan, J. P.: The treatment of systemic lupus erythematosus (SLE) with the T-cell immunostimulant drug levamisole: a case report. Ann. Allergy, 35: 343–355, 1975.

    PubMed  Google Scholar 

  88. 88.

    De Brabander, M., Aerts, F., Genuens, G., Van Ginckel, R., Van de Veire, R., and Van Belle, H.: DL-2-oxo-3-(2-mercaptoethyl)-5-phenylimidazolidine. A sulfhydryl metabolite of levamisole that interacts with microtubules. Chem. Biol. Interaction, 23: 45–63, 1978.

    Article  Google Scholar 

  89. 89.

    Hobbs, H. E., Sorsby, A., and Freedman, A.: Retinopathy following chloroquin therapy. Lancet, 2: 478–480, 1959.

    PubMed  CAS  Article  Google Scholar 

  90. 90.

    Mihan, R., and Ayres, Jr., S.: Lupus erythematosus and vitamin E: an effective and nontoxic therapy. Cutis, 23: 49–53, 1979.

    PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

About this article

Cite this article

Harman, D. Free radical theory of aging: Beneficial effect of antioxidants on the life span of male NZB mice; role of free radical reactions in the deterioration of the immune system with age and in the pathogenesis of systemic lupus erythematosus. AGE 3, 64–73 (1980). https://doi.org/10.1007/BF02431730

Download citation

Keywords

  • Systemic Lupus Erythematosus
  • Quinoline
  • Nuclear Antigen
  • Free Radical Reaction
  • Average Life Span