, Volume 3, Issue 3, pp 64–73 | Cite as

Free radical theory of aging: Beneficial effect of antioxidants on the life span of male NZB mice; role of free radical reactions in the deterioration of the immune system with age and in the pathogenesis of systemic lupus erythematosus

  • Denham Harman


Autoimmune manifestations increase with age. Tolerance to self-antigens appears to be actively maintained mainly by T-suppressor cells derived from radio-sensitive precursors. Since endogenous free radical reactions seem to increase with age the associated increase in autoimmunity could be due, at least in part, to a disproportionate decrease in suppressor cell function, as compared to the other cells of the immune system. This possibility was evaluated using New Zealand black (NZB) mice; this strain loses T-cell suppressor function early in life and develops autoimmune manifestations which mimic those seen in old mice of normal strains.

Addition of 0.25%w (percent by weight) α-tocopheral acetate, 0.25%w Santoquin (a quinoline derivative), or 1.0%w NaH2PO2 to the diet of NZB male mice, starting shortly after weaning, increased the average life span by 7.1, 32.1 and 1.2 percent, respectively, by comparison with the control life span of 16.8 months. These data support the above-suggested explanation for the rise in autoimmunity with age.

The NZB mouse serves as a model for systemic lupus erythematosus (SLE). The present study led to the suggestion that the basic defect in SLE is an abnormality(s) which enhances the tendency for nuclear antigens to be formed from nuclear components by a free radical pathway. The nuclear antigens in turn give rise to immune complex disease. Thus the beneficial effect of antioxidants in the present study can be attributed to a decrease in the rate of: 1) formation of nuclear antigens, 2) free radical damage initiated by aggregating neutrophils, and 3) free radical reaction-induced loss of T-suppressor cell function with age owing to a reduction in damage from both “normal” endogenous free radicals and those of neutrophil origin.


Systemic Lupus Erythematosus Quinoline Nuclear Antigen Free Radical Reaction Average Life Span 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kay, M. B. K., and Makinodan, T.: Immunobiology of aging: evaluation of current status. Clin. Immunol. Immunopathol., 6: 394–413, 1976.PubMedCrossRefGoogle Scholar
  2. 2.
    Meredith, P., and Walford, R. L.: Autoimmunity, histocompatibility, and aging. Mech. Ageing Dev., 9: 61–77, 1979.PubMedCrossRefGoogle Scholar
  3. 3.
    Harman, D.: Free radical theory of aging: nutritional implications. Age, 1: 145–152, 1978.Google Scholar
  4. 4.
    Harman, D.: The free radical theory of aging: effect of age on serum copper levels. J. Gerontol., 20: 151–153, 1965.PubMedGoogle Scholar
  5. 5.
    Harman, D.: The free radical theory of aging: the effect of age on serum mercaptan levels. J. Gerontol., 15: 38–40, 1960.PubMedGoogle Scholar
  6. 6.
    Leto, S., Yiengst, M. J., and Barrows, Jr., C. H.: The effect of age and protein deprivation on the sulphydryl content of serum albumin. J. Gerontol., 25: 4–8, 1970.PubMedGoogle Scholar
  7. 7.
    Tam, C. F., and Walford, R. L.: Cyclic nucleotide levels in resting and mitogen-stimulated spleen cell suspensions from young and old mice. Mech. Ageing Dev., 7: 309–320, 1978.PubMedCrossRefGoogle Scholar
  8. 8.
    Mittal, C. K., and Murad, F.: Activation of guanylate cyclase by superoxide dismutase and hydroxyl radical: a physiological regulator of guanosine-3′, 5′-monophosphate. Proc. Natl. Acad. Sci. U.S.A., 74: 4360–4364, 1977.PubMedGoogle Scholar
  9. 9.
    Graff, G., Stephenson, J. H., Winget, R. R., and Goldberg, N. D.: Oxidative activation of guanylate cyclase by prostaglandin endoperoxides and fatty acid hydroperoxides. Lipids, 14: 212–228, 1979.Google Scholar
  10. 10.
    Goldberg, N. D., and Haddox, M. K.: Cyclic GMP metabolism and involvement in biological regulation. Ann. Rev. Biochem., 46: 823–896, 1977.PubMedCrossRefGoogle Scholar
  11. 11.
    DeRubertis, F. R., and Craven, P. A.: Calcium-independent modulation of cyclic GMP and activation of guanylate cyclase by nitrosamines. Science, 193: 897–899, 1976.PubMedGoogle Scholar
  12. 12.
    Harman, D., Heidrick, M. L., and Eddy, D. E.: Free radical theory of aging: effect of free radical reaction inhibitors on the immune response. J. Amer. Geriatrics Soc., 25: 400–407, 1977.Google Scholar
  13. 13.
    Eardley, D. D., Hugenberger, J., McVay-Boudreau, L., Shen, F. W., Gershon, R. K., and Cantor, H.: Immunoregulatory circuits among T-cell sets. I. T-helper cells induce other T-cell sets to exert feedback inhibition. J. Exper. Med., 147: 1106–1115, 1978.CrossRefGoogle Scholar
  14. 14.
    Cantor, H., McVay-Boudreau, L., Hugenberger, J., Naidorf, K., Shen, F. W.,and Gershon, R. K.: Immunoregulatory circuits among T-cell sets. II. Physiologic role of feedback inhibition in vivo: absence in NZB mice. J. Exper. Med., 147: 1116–1125, 1978.CrossRefGoogle Scholar
  15. 15.
    Cantor, H., and Gershon, R. K.: Immunological circuits: cellular composition. Fed. Proc., 38: 2058–2064, 1979.PubMedGoogle Scholar
  16. 16.
    Reinherz, E. L., Robertson, P, Rappeport, J., Rosen, F. S., and Schlossman, S. F.: Aberrations of suppressor T-cells in human graft-versus-host-disease. New Engl. J. Med., 300: 1061–1068, 1979.PubMedCrossRefGoogle Scholar
  17. 17.
    Eisenthal, A., Nachtigal, D., and Feldman, M.: Studies of allospecific suppressor cells in culture, in Adv. Exper. Med. Biol., Vol. 114, Function and Structure of the Immune System, edited by Müller-Ruchholz, W., and Müller-Hermelink, H. R., New York, Plenum Press, 1979, pp. 301–306.Google Scholar
  18. 18.
    Sinclair, N. R. St. C., Lees, R. K., Missiuna, P. C., and Fung, F. V.: In vitro generation of cells capable of suppressing in vitro cell-mediated immunity, in Suppressor Cells in Immunity, edited by Singhal, S. K.,and Sinclair, N. R. St. C., London, Ontario, Western Ontario Press, 1975, pp. 42–49.Google Scholar
  19. 19.
    Batchelor, J. R.: Summing-up: immunological tolerance (suppression/deletion), in Adv. Exper. Med. Biol., Vol. 114: Function and Structure of the Immune System, edited by Muller-Ruchholz, W., and Muller-Hermelink, H. K., New York, Plenum Press, 1979, pp. 363–365.Google Scholar
  20. 20.
    Anderson, R. E., and Lefkovits, I.: In vitro evaluation of radiation-induced augmentation of the immune response. Amer. J. Pathol., 97: 456–472, 1979.Google Scholar
  21. 21.
    Howie, J. B., and Helyer, B. J.: The immunology and pathology of NZB mice, in Adv. in Immunology, Vol. 9, edited by Dixon, Jr., F. J., and Kunkel, H. G., New York, Academic Press, 1968, pp. 215–266.Google Scholar
  22. 22.
    Talal, N., and Steinberg, A. D.: The pathogenesis of autoimmunity in New Zealand black mice. Curr. Top. Microbiol. Immunol., 64: 79–103, 1974.PubMedGoogle Scholar
  23. 23.
    Howie, J. B., and Helyer, B. J.: Autoimmune disease in mice. Ann. New York Acad. Sci., 124: 167–177, 1965.Google Scholar
  24. 24.
    Bielschowsky, M., Helyer, B. J., and Howie, J.B.: Spontaneous hemolytic anemia in mice of the NZB/BL strain. Proc. Univ. Otago Med. Sch., 37: 9–11, 1959.Google Scholar
  25. 25.
    Fernandes, G., Yunis, E. J., Smith, J., and Good, R. A.: Dietary influence on breeding behavior, hemolytic anemia, and longevity in NZB mice. Proc. Soc. Exper. Biol. Med., 139: 1189–1196, 1972.Google Scholar
  26. 26.
    Ohsugi, Y., Nakano, T., Hata, S.-I., Niki, R., Matsuno, T., Nishii, Y., and Takagaki, Y.: N-(2-carboxyphenyl)-4-chloroanthranilic acid disodium salt: prevention of autoimmune kidney disease in NZB/NZW F, hybrid mice. J. Pharm. Pharmac., 30: 126–128, 1978.Google Scholar
  27. 27.
    Harman, D., Eddy, D. E., and Noffsinger, J.: Free radical theory of aging: inhibition of amyloidosis in mice by antioxidants; possible mechanism. J. Amer. Geriatrics Soc., 24: 203–210, 1976.Google Scholar
  28. 28.
    Gupto, S., and Good, R. A.: Subpopulations of human T-lymphocytes. II. Effect of thymopoietin, corticosteroids, and irradiation. Cell. Immunol., 34: 10–18, 1977.CrossRefGoogle Scholar
  29. 29.
    Shek, P. N., Waltenbaugh, C., and Coons, A.H.: Effect of colchicine on the antibody response. J. Exper. Med., 147: 1228–1233, 1978.CrossRefGoogle Scholar
  30. 30.
    Kishimoto, S., Tomino, S., Mitsuya, H.,and Fujiwara, H.: Age-related changes in suppressor functions of human T-cells. J. Immunol., 123: 1586–1593, 1979.PubMedGoogle Scholar
  31. 31.
    Hirokawa, K., and Makinodan, T.: Thymic involution: effect on T-cell differentiation. J. Immunol., 114: 1659–1664, 1975.PubMedGoogle Scholar
  32. 32.
    Klassen, L. W., Krakauer, R. S., and Steinberg, A. D.: Selective loss of suppressor cell function in New Zealand mice induced by NTA. J. Immunol., 119: 830–837, 1977.PubMedGoogle Scholar
  33. 33.
    Shirai, T., Hayakawa, K., Okumura, K., and Tada, T.: Differential cytotoxic effect of natural thymocytotoxic autoantibody of NZB mice on functional subsets of T-cells. J. Immunol., 120: 1924–1929, 1978.PubMedGoogle Scholar
  34. 34.
    Sakane, T., Steinberg, A. D., Reeves, J. P., and Green, I.: Studies of immune function of patients with systemic lupus erythematosus. J. Clin. Invest., 63: 954–965, 1979.PubMedGoogle Scholar
  35. 35.
    Manny, N., Datta, S. K., Schwartz, R. S.: Synthesis of IgM by cells of NZB and SWR mice and their crosses. J. Immunol., 122: 1220–1227, 1979.PubMedGoogle Scholar
  36. 36.
    Primi, D., Hammarstrom, L., and Smith, C. I. E.: Genetic control of lymphocyte suppression. I. Lack of suppression in aged NZB mice is due to a B-cell defect. J. Immunol., 121: 2241–2243, 1978.PubMedGoogle Scholar
  37. 37.
    Moutsopoulos, H. M., Boehn-Truitt, M., Kassan, S. S.: Demonstration of activation of B-lymphocytes in New Zealand black mice at birth by an immunoradiometric assay for murine IgM. J. Immunol., 119: 1639–1644 1977.PubMedGoogle Scholar
  38. 38.
    Parker, C. W., Kelly, J. P., Falkenhein, S. F., and Huber, M. G.: Release of arachidonic acid from human lymphocytes in response to mitogenic lectins. J. Exper. Med., 149: 1487–1503, 1979.CrossRefGoogle Scholar
  39. 39.
    Passwell, J. H., Dayer, J. M., and Merler, E.: Increased prostaglandin production by human monocytes after membrane receptor activation. J. Immunol., 123: 115–120, 1979.PubMedGoogle Scholar
  40. 40.
    Metzger, Z., Hoffeld, J. T., and Oppenheim, J. J.: Macrophage-mediated suppression. I. Evidence for participation of both hydrogen peroxide and prostaglandins in suppression of murine lymphocyte proliferation. J. Immunol., 124: 983–988, 1980.PubMedGoogle Scholar
  41. 41.
    Oliver, J. M., Albertini, D. F., and Berlin, R. D.: Effects of glutathione-oxidizing agents on microtubule assembly and microtubule-dependent surface properties of human neutrophils. J. Cell Biol., 71: 921–932, 1976.PubMedCrossRefGoogle Scholar
  42. 42.
    Storer, J. B.: Acute responses to ionizing radiation, in Biology of the Laboratory Mouse, Second Edition, edited by Green, E. L., New York, McGraw-Hill Book Co., 1966, pp. 427–446.Google Scholar
  43. 43.
    Jarcho, S.: The clinical features of systemic lupus erythematosus. J. Mt. Sinai Hosp., N. Y., 26: 278–289, 1959.Google Scholar
  44. 44.
    Bach, J.-F.: Pathology of immune complexes and systemic lupus erythematosus, in Immunology, edited by Bach, J.-F., New York, John Wiley & Sons, 1978, pp. 699–730.Google Scholar
  45. 45.
    Lupus Erythematosus, Second Edition, edited by Dubois, E. L., Los Angeles, University Southern California Press, 1974.Google Scholar
  46. 46.
    Miller, K. B., and Swartz, R. S.: Familial abnormalities of suppressor-cell function in systemic lupus erythematosus. New Engl. J. Med., 301: 803–809, 1979.PubMedCrossRefGoogle Scholar
  47. 47.
    Todd, P.: UV-induced DNA to protein cross-linking in mammalian cells, in Aging, Carcinogenesis, and Radiation Biology, edited by Smith, K. C., New York, Plenum Press, 1978, pp. 83–104.Google Scholar
  48. 48.
    Cram, D. L., Epstein, J. H., and Tuffanelli, D.L.: Lupus erythematosus and porphyria. Arch. Dermatol., 108: 779–784, 1973.PubMedCrossRefGoogle Scholar
  49. 49.
    Thompson, R. H. S., and Watson, D.: Serum copper levels in pregnancy and pre-eclampsia. J. Clin. Path., 2: 193–196, 1949.Google Scholar
  50. 50.
    Lahey, M. E., Gubler, C. J., Cartwright, G. E., and Wintrobe, M. M.: Studies in copper metabolism. VII. Blood copper in pregnancy and various pathologic states. J. Clin. Invest., 32: 329–339, 1953.PubMedGoogle Scholar
  51. 51.
    Smith, Jr., J. D., and Brown, E. D.: Effects of oral contraceptive agents on trace element metabolism-a review, in Trace Elements in Human Health and Disease. Vol. 2, Essential and Toxic Elements, edited by Prasad, A. S. and Oberleas, New York, Academic Press, 1976, pp. 315–345.Google Scholar
  52. 52.
    Stokes, T., and Wynn, V.: Serum lipids in women on oral contraceptives. Lancet, 2: 677–681, 1971.PubMedCrossRefGoogle Scholar
  53. 53.
    Chapel, T. A., and Burns, R. E.: Oral contraceptives and exacerbation of lupus erythematosus. Amer. J. Obstet. Gynecol., 110: 366–369, 1971.Google Scholar
  54. 54.
    Boyle, Jr., G. G., Friedlaender, M. H., and Smith, C. K.: Rheumatic symptoms and serological abnormalities induced by oral contraceptives. Lancet, 1: 323–326, 1969.CrossRefGoogle Scholar
  55. 55.
    Tan, E. M.: Drug-induced autoimmune disease. Fed. Proc., 33: 1894–1897, 1974.PubMedGoogle Scholar
  56. 56.
    Nelson, S. D., Mitchell, J. R., Timbrell, J. A., Snodgrass, W. R., and Corcoran, III, G. B.: Isoniazid and iproniazid: activation of metabolites to toxic intermediates in man and rat. Science, 1973: 901–903, 1976.Google Scholar
  57. 57.
    Mitchell, J. R., Nelson, S. D., Snodgrass, W. R., and Timbrell, J. A.: Metabolic activation of hydrazines to highly reactive hepatoxic intermediates, in Biological Reactive Intermediates, edited by Jollow, D. J., Kocsis, J. J., Snyder, R., and Vainio, H., New York, Plenum Press, 1977, pp. 271–277.Google Scholar
  58. 58.
    Dybing, E., Mitchell, J. R., Nelson, S. D.,and Gillette, J. R.: Metabolic activation of methyldopa by cytochrome P450-generated superoxide anion, in Biological Reactive Intermediates, edited by Jollow, D. J., Kocsis, J. J., Snyder, R., and Vainio, H., New York, Plenum Press, 1977, pp. 167–172.Google Scholar
  59. 59.
    Harris, J. R.: The biochemistry and ultrastructure of the nuclear envelope. Biochem. Biophys. Acta, 515: 55–104, 1978.PubMedGoogle Scholar
  60. 60.
    Bresnick, E., Vaught, J. B., Chuang, A. H. L., Stoming, T. A., Bockman, D., and Mukhtar, H.: Nuclear aryl hydrocarbon hydroxylase and interaction of polycyclic hydrocarbons with nuclear components. Arch. Biochem. Biophys., 181: 257–269, 1977.PubMedCrossRefGoogle Scholar
  61. 61.
    Mukhtar, H., Elmamlouk, T. H., and Bend, J.R.: Epoxide hydrase and mixed-function oxidase activities of rat liver nuclear membranes. Arch. Biochem. Biophys., 192: 10–21, 1979.PubMedCrossRefGoogle Scholar
  62. 62.
    Mellors, R. C., Shirai, T., Aoki, T., Huebner, R. J., and Krawczynski, K.: Wild-type gross leukemia virus and the pathogenesis of the glomerulonephritis of New Zealand mice. J. Exper. Med., 133: 113–132, 1971.CrossRefGoogle Scholar
  63. 63.
    Levy, J. A.: Autoimmunity and neoplasia: the possible role of the C-type viruses. Amer. J. Clin. Pathol., 62: 258–280, 1974.Google Scholar
  64. 64.
    Phillips, P. E.: The virus hypothesis in systemic lupus erythematosus. Ann. Inter. Med., 83: 709–715, 1975.Google Scholar
  65. 65.
    Panem, S., Ordonez, N. G., Kirstein, W. H., Katz, A. I., and Spargo, B. H.: C-type virus expression in systemic lupus erythematosus. New Engl. J. Med., 295: 470–475, 1976.PubMedCrossRefGoogle Scholar
  66. 66.
    Weiss, R. A.: Why cell biologists should be aware of genetically transmitted viruses. Natl. Cancer Inst. Monograph., 48: 183–189, 1978.Google Scholar
  67. 67.
    Igel, H. J. Huebner, R. J., Turner, H. C., Kotin, P., and Falk, H. L.: Mouse leukemia virus activation by chemical carcinogens. Science. 166: 1624–1626, 1969.PubMedGoogle Scholar
  68. 68.
    Haran-Ghera, N.: A leukemogenic filtrable agent from chemically-induced lymphoid leukemia in C57BL mice. Proc. Soc. Exper. Biol. Med., 124: 697–699, 1967.Google Scholar
  69. 69.
    Bresnihan, B., and Jasin, H. E.: Suppressor function of peripheral blood mononuclear cells in normal individuals and in patients with systemic lupus erythematosus. J. Clin. Invest., 59: 106–116, 1977.PubMedGoogle Scholar
  70. 70.
    Reddy, A. L., Fialkow, P. J., and Salo, A.: Ultraviolet radiation-induced chromosomal abnormalities in fetal fibroblasts from New Zealand black mice. Science, 201: 920–922, 1978.PubMedGoogle Scholar
  71. 71.
    Theofilopoulos, A. N., and Dixon, F. J.: The biology and detection of immune complexes. Adv. Immunol., 28: 89–220, 1979.PubMedCrossRefGoogle Scholar
  72. 72.
    Levinsky, R. J., Cameron, J. S., and Soothill, J. F.: Serum immune complexes and disease activity in lupus nephritis. Lancet, 1: 564–567, 1967.Google Scholar
  73. 73.
    Porter, R. R., and Reed, B. M.: The biochemistry of complement. Nature, 275: 699–704, 1978.PubMedCrossRefGoogle Scholar
  74. 74.
    O’Flaherty, J. T., and Ward, P. A.: Chemotactic factors and the neutrophil. Seminars in Hematol., 16: 163–174, 1979.Google Scholar
  75. 75.
    Sissons, J. G. P., Liebowitch, J., Amos, N., and Peters, D. K.: Metabolism of the fifth component of complement, and its relation to metabolism of the third component, in patients with complement activation. J. Clin. Invest., 59: 704–715, 1977.PubMedGoogle Scholar
  76. 76.
    Camussi, G., Tetta, C., Bussolino, F., Cappio, F. C., Coda, R., Masera, C., and Segolini, G.: Mediators of immune complex-induced aggregation of polymorphonuclear neutrophils. I. C5a anaphylatoxin, neutrophil cationic proteins and their cleavage fragments. Intern. Arch. Allergy Appl. Immunol., 62: 1–15, 1980.Google Scholar
  77. 77.
    O’Flaherty, J. T., Kreutzer, D. L., and Ward, P. A.: Effect of prostaglandins E1, E2, and F2a on neutrophil aggregation. Prostaglandins, 17: 201–210, 1979.PubMedCrossRefGoogle Scholar
  78. 78.
    Jacob, H. S., Craddock, P. R., Hammerschmidt, D. E., and Moldow, C. F.: Complement-induced granulocyte aggregation: an unsuspected mechanism of disease. New Engl. J. Med., 302: 789–794, 1980.PubMedCrossRefGoogle Scholar
  79. 79.
    Craddock, P. R., Hammerschmidt, D. E., Moldow, C. F., Yamada, O., and Jacob, H. S.: Granulocyte aggregation as a manifestation of membrane interactions with complement: possible role in leukocyte margination, microvascular occlusion, and endothelial damage. Seminars in Hematol., 16: 140–147, 1979.Google Scholar
  80. 80.
    Johnston, Jr., R. B., and Lehmeyer, J. E.: Elaboration of toxic oxygen by-products by neutrophils in a model of immune complex disease. J. Clin. Invest., 57: 836–841, 1976.PubMedGoogle Scholar
  81. 81.
    Sacks, T., Moldow, C. F., Craddock, P.R., Bowers, T.K., and Jacob, H.S.: Oxygen radicals mediate endothelial cell damage by complement-stimulated granulocytes: an in vitro model of immune vascular damage. J. Clin. Invest., 61: 1061–1067, 1978.CrossRefGoogle Scholar
  82. 82.
    Hammerschmidt, D. E., White, J. C., Craddock, P. R., and Jacob, H. S.: Corticosteroids inhibit complement-induced granulocyte aggregation. J. Clin. Invest., 63: 798–803, 1979.PubMedGoogle Scholar
  83. 83.
    DeChatelet, L. R., Shirley, P. S., McPhall, L. C., Huntley, C. C., Muss, H. B., and Bass, D. A.: Oxidative metabolism of the human eosinophil. Blood, 50: 525–535, 1977.PubMedGoogle Scholar
  84. 84.
    Brown, B. R., and Sipes, I. G.: Biotransformation and hepatotoxicity of halothane. Biochem. Pharmacol., 26: 2091–2094, 1977.PubMedCrossRefGoogle Scholar
  85. 85.
    Vergani, D., Mieli-Vergani, G., Alberti, A., Neuberger, J., Eddleston, A.L.W.F., Davis, M., and Williams, R.: Antibodies to the surface of halothane-altered rabbit hepatocytes in patients with severe halothane-associated hepatitis. New Engl. J. Med., 303: 66–71, 1980.PubMedCrossRefGoogle Scholar
  86. 86.
    Smith, C. I., Cooksley, W. G. E., and Powell, L. W.: Cell-mediated immunity to liver antigen in toxic liver injury. Clin. Exper. Immunol., 39: 607–617, 1980.Google Scholar
  87. 87.
    Gordon, II, B. L., and Keenan, J. P.: The treatment of systemic lupus erythematosus (SLE) with the T-cell immunostimulant drug levamisole: a case report. Ann. Allergy, 35: 343–355, 1975.PubMedGoogle Scholar
  88. 88.
    De Brabander, M., Aerts, F., Genuens, G., Van Ginckel, R., Van de Veire, R., and Van Belle, H.: DL-2-oxo-3-(2-mercaptoethyl)-5-phenylimidazolidine. A sulfhydryl metabolite of levamisole that interacts with microtubules. Chem. Biol. Interaction, 23: 45–63, 1978.CrossRefGoogle Scholar
  89. 89.
    Hobbs, H. E., Sorsby, A., and Freedman, A.: Retinopathy following chloroquin therapy. Lancet, 2: 478–480, 1959.PubMedCrossRefGoogle Scholar
  90. 90.
    Mihan, R., and Ayres, Jr., S.: Lupus erythematosus and vitamin E: an effective and nontoxic therapy. Cutis, 23: 49–53, 1979.PubMedGoogle Scholar

Copyright information

© American Aging Association, Inc. 1980

Authors and Affiliations

  • Denham Harman
    • 1
  1. 1.Departments of Medicine and BiochemistyUniversity of Nebraska College of MedicineOmaha

Personalised recommendations