Journal of Materials Science

, Volume 21, Issue 11, pp 4101–4106 | Cite as

A comparison between ion implantation and laser alloying of iron for oxidation resistance improvement

Part 2 Aluminium alloying
  • M. Pons
  • M. Caillet
  • A. Galerie


Following previous results concerning boron alloying by ion implantation or laser surface melting, we study the role of aluminium to improve the high temperature oxidation of iron. Laser alloying has a greater efficiency than ion implantation. The aluminium containing phases formed at the metal-scale interface are responsible for the observed protection. The behaviour of the laser surface alloy is quite comparable to that of conventional alloys Fe-5Al. These two techniques, ion implantation and laser irradiation, seem to be of importance for future developments of corrosion protection.


Boron Laser Irradiation Oxidation Resistance Surface Alloy Corrosion Protection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. Asworth, W. A. Grant andR. P. M. Procter, (eds) in “Ion Implantation into Metals” (Pergamon Press, Oxford, 1982).Google Scholar
  2. 2.
    E. Mc Cafferty, C. R. Clayton andJ. Oudar, (eds) in “Fundamentals Aspects of Corrosion Protection by Surface Modifications” (The Electrochemical Society, Pennington, New Jersey, 1984).Google Scholar
  3. 3.
    K. Mukherjee andJ. Mazumder, (eds) in “Lasers in Metallurgy” (The Metallurgical Society of AIME, Warrendale, Pennyslvania, 1981).Google Scholar
  4. 4.
    M. F. Kimmit (ed.), in “Lasers in Manufacturing”, (North Holland and IFS, Amsterdam, 1983).Google Scholar
  5. 5.
    M. Pons, A. Galerie andM. Caillet,J. Mater. Sci. 21 (1986) 2697.CrossRefGoogle Scholar
  6. 6.
    M. Pons, thèse d'Etat, Institut National Polytechnique of Grenoble, France, (1985).Google Scholar
  7. 7.
    M. Hansen, in “Constitution of Binary Alloys”, (McGraw-Hill, New York, 1958) p. 90; 1st Supplement, R. P. Elliot (1965) p. 35; 2nd Supplement F. A. Shunk (1969) p. 24.Google Scholar
  8. 8.
    L. M. Atlas andW. K. Sumida,J. Amer. Ceram. Soc. 41 (1958) 150.Google Scholar
  9. 9.
    I. Barin andO. Knacke, “Thermochemical Properties of Inorganic Compounds”, (Springer Verlag, Berlin, 1973).Google Scholar
  10. 10.
    M. Pons, M. Caillet andA. Galerie,Nucl. Inst. Meth. 209/210 (1983) 1011.CrossRefGoogle Scholar
  11. 11.
    P. Tomazewick andG. R. Walwork,Rev. High Temp. Mater. 4 (1983) 165.Google Scholar
  12. 12.
    W. Boggs,J. Electrochem. Soc. 118 (1971) 906.Google Scholar
  13. 13.
    A. Galerie andG. Dearnaley,Nucl. Inst. Meth. 209/210 (1983) 823.CrossRefGoogle Scholar
  14. 14.
    Idem, Mater. Sci. Eng. 69 (1985) 381.CrossRefGoogle Scholar
  15. 15.
    C. Chan, J. Mazumder andM. M. Chen,Metall. Trans. 15A (1984) 2175.Google Scholar

Copyright information

© Chapman and Hall Ltd. 1986

Authors and Affiliations

  • M. Pons
    • 1
  • M. Caillet
    • 1
  • A. Galerie
    • 1
  1. 1.Laboratoire d'Adsorption et Réaction de Gaz sur SolidesUA CNRS 413St Martin D'HèresFrance

Personalised recommendations