Advertisement

Journal of Materials Science

, Volume 21, Issue 11, pp 3977–3980 | Cite as

Kinetics and edge-growth effects of GaAs LPE layers grown in the Ga-As-Bi system

  • M. Panek
  • M. Ratuszek
  • M. Tłaczała
Papers

Abstract

Studies of the growth kinetics of GaAs epitaxial layers obtained from Ga-As and Ga-As-Bi solutions are compared in this work. We applied an equilibrium cooling method in a classic liquid phase epitaxy (LPE) system with the use of slider-type boats. The studies were carried out for Ga-As-Bi solutions containing 0 to 95% wt % Bi and also for Ga-As solutions at the same technological parameters of the growth process for comparison purposes. It is shown that in the applied range of bismuth concentration in the alloys, the GaAs growth rate is 0.5 to 3 times higher than for classic Ga-As solutions. It is found that the presence of bismuth in the solutions eliminates a disadvantageous GaAs edge-growth on the layer edges and considerably decreases the number of meniscus lines on the deposited layer surface.

Keywords

Polymer Growth Rate Layer Surface GaAs Bismuth 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. B. Ganina, W. B. Ufimcev andW. I. Fistul,Pisma ZFT 8 (1982) 620.Google Scholar
  2. 2.
    Yu. E. Maroncuk, T. A. Polanskaya andN. A. Jakuseva,Izv. Akad. SSSR, Neorg. mater. 20 (1984) 13.Google Scholar
  3. 3.
    S. B. Evgenev andN. B. Ganina,ibid. 20 (1984) 561.Google Scholar
  4. 4.
    M. Hansen andK. Anderko, in “Struktury Dvoynych Splavov” (Metallurgizdat, Moscow, 1962) p. 173.Google Scholar
  5. 5.
    R. K. Willardson andW. P. Allred, in Proceedings of 1st International Symposium on gallium arsenide, Reading University (1966) p. 35.Google Scholar
  6. 6.
    L. R. Dawson,Prog. Solid State Chem. 7 (1972) 117.CrossRefGoogle Scholar
  7. 7.
    M. C. Casey Jr andM. B. Panish, in “Heterostructure Lasers”, Part 2 (Academic Press, New York, 1978).Google Scholar
  8. 8.
    I. Crossley andM. B. Small,J. Cryst. Growth 19 (1973) 160.CrossRefGoogle Scholar
  9. 9.
    M. G. Astels, M. Hill andV. W. Steward,ibid. 62 (1983) 61.CrossRefGoogle Scholar
  10. 10.
    Tablicy Fiziceskich Vielicyn (Atomizdat, Moscow, 1976) p. 250.Google Scholar
  11. 11.
    CRC Handbook of Chemistry and Physics, 65th Edn (1984) p. F-22.Google Scholar
  12. 12.
    K. Palc, T. Nishinaga andT. Nakamura,Jpn J. Appl. Phys. 18 (1979) 1699.CrossRefGoogle Scholar
  13. 13.
    T. Mikawa, O. Wada andM. Taleanaski,ibid. 11 (1972) 1756.CrossRefGoogle Scholar

Copyright information

© Chapman and Hall Ltd. 1986

Authors and Affiliations

  • M. Panek
    • 1
  • M. Ratuszek
    • 1
  • M. Tłaczała
    • 1
  1. 1.Institute of Electron TechnologyTechnical University of WroclawWroclawPoland

Personalised recommendations