Topics in Catalysis

, Volume 3, Issue 1–2, pp 221–247 | Cite as

A model of the interaction of ionic tips with ionic surfaces for interpretation of scanning force microscope images

  • Alexander L. Shluger
  • Andrew L. Rohl


Scanning force microscopy (SFM) is an increasingly popular tool in surface studies. With the promise of lateral as well as vertical atomic resolution, its use is sure to become widespread in fields such as catalysis and crystal growth. However, the interpretation of the observed images is still unclear and therefore theoretical models are very important for an understanding of the imaging mechanism. We present a review of our recent calculations on the interaction between ionic tips and ionic surfaces and its effects on the scanning process. Our theoretical model of the SFM experiment combines an atomistic treatment of the interaction between a crystalline sample and the nanoasperity at the end of the tip with a semiempirical treatment of the mesoscopic van der Waals attraction between tip and surface and the macroscopic parameter of cantilever deflection. These static calculations based on total energy minimisation were used to determine the surface and tip geometries and energy as a function of tip height at each point of a scan. Scanlines of the perfect (001) surfaces of LiF and MgO were studied at different constant vertical forces exerted on the tip with and without jump to contact. Although scanlines showing lattice periodicity were obtained in some cases, the calculations demonstrate that the tip-surface interaction is a collective phenomenon with the tip probing several rows of surface ions. The calculations demonstrated a wide range of deformations of the tip and sample during a surface scan, and the (often reversible) interchange of material between the tip and sample. The conditions required for the resolution of point defects as well as the mechanism of friction are discussed.


alkali halides magnesium oxide surfaces point defects atomistic modelling tip-surface interaction scanning force microscope imaging 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    D. Tabor and R.H.S. Winterton, Proc. Roy. Soc. A 312 (1969) 435.Google Scholar
  2. [2]
    J.N. Israelachvili and G.E. Adams, J. Chem. Soc. Faraday Trans. I 74 (1978) 975.CrossRefGoogle Scholar
  3. [3]
    J.N. Israelachvili,Intermolecular and Surface Forces (Academic Press, London, 1991).Google Scholar
  4. [4]
    W.A. Ducker, T.J. Sendem and R.M. Pashley, Langmuir 8 (1992) 1831.CrossRefGoogle Scholar
  5. [5]
    J.L. Parker, Langmuir 8 (1992) 551.CrossRefGoogle Scholar
  6. [6]
    H. Yoshizawa, Y. Chen and J. Israelachvili, J. Phys. Chem. 97 (1993) 4128.CrossRefGoogle Scholar
  7. [7]
    J. Georges, A. Tonck and D. Mazuyer, in:Forces in Scanning Probe Methods, eds. H.-J. Güntherodt, D. Anselmetti and E. Meyer (Kluwer, Dordrecht, 1995) p. 263.Google Scholar
  8. [8]
    G. Binnig, Ultramicroscopy 42–44 (1992) 7.CrossRefGoogle Scholar
  9. [9]
    E. Meyer, Progr. Surf. Sci. 41 (1992) 3.CrossRefGoogle Scholar
  10. [10]
    U. Dürig, O. Züger and A. Stalder, J. Appl. Phys. 72 (1992) 1778.CrossRefGoogle Scholar
  11. [11]
    N.A. Burnham, R.J. Colton and H.M. Pollock, Nanotechnology 4 (1993) 64.CrossRefGoogle Scholar
  12. [12]
    C.F. Quate, Surf. Sci. 299/300 (1994) 980.CrossRefGoogle Scholar
  13. [13]
    F.J. Giessibl, Jpn. J. Appl. Phys. 33 (1994) 3726.CrossRefGoogle Scholar
  14. [14]
    O. Marti and J. Colchero, in:Forces in Scanning Probe Methods, eds. H.-J. Güntherodt, D. Anselmetti and E. Meyer (Kluwer, Dordrecht, 1995) p. 15.Google Scholar
  15. [15]
    U. Dürig, in:Forces in Scanning Probe Methods, eds. H.-J. Güntherodt, D. Anselmetti and E. Meyer (Kluwer, Dordrecht, 1995) p. 191.Google Scholar
  16. [16]
    C.M. Mate, G.M. McClelland, R. Erlandsson and S. Chiang, Phys. Rev. Lett. 59 (1987) 1942.CrossRefGoogle Scholar
  17. [17]
    E. Meyer, H. Heinzelmann, P. Grutter, T. Jung, H. Hidber, H. Rudin and H.-J. Güntherodt, Thin Solid Films 181 (1989) 527.CrossRefGoogle Scholar
  18. [18]
    G. Meyer and N.A. Amer. Appl. Phys. Lett. 57 (1990) 2089.CrossRefGoogle Scholar
  19. [19]
    E. Meyer, R. Lüthi, L. Howald and H. Güntherodt, in:Forces in Scanning Probe Methods, eds. H.-J. Güntherodt, D. Anselmetti and E. Meyer (Kluwer, Dordrecht, 1995) p. 285.Google Scholar
  20. [20]
    L. Howald, H. Haefke, R. Lüthi, E. Mayer, G. Gerth, H. Rudin and H.-J. Güntherodt, Phys. Rev. B 49 (1994) 5615.CrossRefGoogle Scholar
  21. [21]
    L. Howald, R. Lüthi, E. Meyer, G. Gerth, H. Haefke, R. Overney and H.-J. Güntherodt, J. Vac. Sci. Technol. B 12 (1994) 2227.CrossRefGoogle Scholar
  22. [22]
    D.F. Ogletree, J. Hu, X. Xiao, C. Morant, Q. Dai, R. Vollmer, R. Carpick and M. Salmeron, in:Forces in Scanning Probe Methods, eds. H.-J. Güntherodt, D. Anselmetti and E. Meyer (Kluwer, Dordrecht, 1995) p. 337.Google Scholar
  23. [23]
    F. Ohnesorge and G. Binnig, Science 260 (1993) 1451.Google Scholar
  24. [24]
    M. Ohta, T. Konishi, Y. Sugawara, S. Morita, M. Suzuki and Y. Enomoto, Jpn. J. Appl. Phys. 32 (1993) 2980.CrossRefGoogle Scholar
  25. [25]
    A.L. Shluger, R.M. Wilson and R.T. Williams, Phys. Rev. B 49 (1994) 4915.CrossRefGoogle Scholar
  26. [26]
    R.M. Wilson, W.E. Pendelton and R.T. Williams, Radiat. Eff. Def. Solids 128 (1994) 79.Google Scholar
  27. [27]
    H.C. Hamaker, Physica 4 (1937) 1058.Google Scholar
  28. [28]
    E.M. Lifshitz, Soviet Phys. JETP 2 (1956) 73.Google Scholar
  29. [29]
    U. Hartmann, Phys. Rev. B 42 (1990) 1541.CrossRefGoogle Scholar
  30. [30]
    F.O. Goodman and N. Garcia, Phys. Rev. B 43 (1991) 4728.CrossRefGoogle Scholar
  31. [31]
    N. Garcia and V.T. Binh, Phys. Rev. B 46 (1992) 7946.CrossRefGoogle Scholar
  32. [32]
    S.P. Jarvis and J.B. Pethica, in:Forces in Scanning Probe Methods, eds. H.-J. Güntherodt, D. Anselmetti and E. Meyer (Kluwer, Dordrecht, 1995) p. 105.Google Scholar
  33. [33]
    J.P. Pethica and A.P. Sutton, J. Vac. Sci. Technol. A 6 (1988) 2494.CrossRefGoogle Scholar
  34. [34]
    U. Landman, W.D. Luedtke, N.A. Burnham and R.J. Colton, Science 248 (1990) 454.Google Scholar
  35. [35]
    A.L. Weisenhorn, P. Maivald, H. Butt and P.K. Hansma, Phys. Rev. B 45 (1992) 11226.CrossRefGoogle Scholar
  36. [36]
    O. Marti, B. Drake and P.K. Hansma, Appl. Phys. Lett. 51 (1987) 484.CrossRefGoogle Scholar
  37. [37]
    J.L. Hutter and J. Bechhoefer, J. Appl. Phys. 73 (1993) 4123.CrossRefGoogle Scholar
  38. [38]
    J.E. MacDougall, S.D. Cox, G.D. Stucky, A.L. Weisenhorn, P.K. Hansma and W.S. Wise, Zeolites 11 (1991) 426.CrossRefGoogle Scholar
  39. [39]
    A.L. Weisenhorn, J.E. MacDougall, S.A.C. Gould, S.D. Cox, W.S. Wise, J. Massie, P. Maivald, V.B. Elings, G.D. Stucky and P.K. Hansma, Science 247 (1990) 1330.Google Scholar
  40. [40]
    A.J. Gratz, P.E. Hillner and P.K. Hansma, Geochim. Cosmochim. Acta 57 (1993) 491.CrossRefGoogle Scholar
  41. [41]
    J.H. Hoh, J.P. Cleveland, C.B. Prater, J.-P. Revel and P.K. Hansma, J. Am. Chem. Soc. 114 (1992) 4917.CrossRefGoogle Scholar
  42. [42]
    E. Meyer, H. Heinzelmann, D. Brodbeck, G. Overney, R. Overney, L. Howald, H. Hug, T. Jung, H. Hidber and H.-J. Güntherodt, J. Vac. Sci. Technol. B 9 (1991) 1329.CrossRefGoogle Scholar
  43. [43]
    H. Heinzelmann, E. Mayer, D. Brodbeck, G. Overney and H.-J. Güntherodt, Z. Phys. B 88 (1992) 321.CrossRefGoogle Scholar
  44. [44]
    R.M. Overney, H. Haefke, E. Meyer and H.-J. Güntherodt, Surf. Sci. Lett. 277 (1992) L29.CrossRefGoogle Scholar
  45. [45]
    E. Meyer, H. Heinzelmann, P. Grütter, H. Hidber and H.-J. Güntherodt, J. Appl. Phys. 66 (1989) 4243.CrossRefGoogle Scholar
  46. [46]
    H. Heinzelmann, E. Meyer, H.-J. Güntherodt and R. Steiger, Surf. Sci. 221 (1989) 1.CrossRefGoogle Scholar
  47. [47]
    R.C. Barrett and C.F. Quate, J. Vac. Sci. Technol. A 8 (1990) 400.CrossRefGoogle Scholar
  48. [48]
    E. Perrot, M. Dayez, A. Humbert, O. Marti, C. Chapon and C.R. Henry, Europhys. Lett. 26 (1994) 659.Google Scholar
  49. [49]
    H. Shindo and H. Nozoye, J. Chem. Soc. Faraday Trans. 88 (1992) 711.CrossRefGoogle Scholar
  50. [50]
    H. Shindo and H. Nozoye, Surf. Sci. 287/288 (1993) 1030.CrossRefGoogle Scholar
  51. [51]
    M. Komiyama and T. Yashima, Jpn. J. Appl. Phys. 33 (1994) 3761.CrossRefGoogle Scholar
  52. [52]
    B. Wassermann, J. Reif and E. Matthias, Phys. Rev. B 50 (1994) 2593.CrossRefGoogle Scholar
  53. [53]
    F.J. Giessibl and G. Binnig, Ultramicroscopy 42–44 (1992) 281.CrossRefGoogle Scholar
  54. [54]
    G. Reiss, H. Bückel, J. Vancea, R. Lecheler and E. Hastreiter, J. Appl. Phys. 70 (1991) 523.CrossRefGoogle Scholar
  55. [55]
    D.A. Grigg, P.E. Russell, J.E. Griffith, M.J. Vasile and E.A. Fitzgerald, Ultramicroscopy 42–44 (1992) 1616.CrossRefGoogle Scholar
  56. [56]
    S.S. Sheiko, M. Möller, E.M.C.M. Reuvekamp and H.W. Zandbergen, Phys. Rev. B 48 (1993) 5675.CrossRefGoogle Scholar
  57. [57]
    C. Odin, J.P. Aimá, Z.E. Kaakour and T. Bouhacina, Surf. Sci. 317 (1994) 321.CrossRefGoogle Scholar
  58. [58]
    F. Atamny and A. Baiker, Surf. Sci. 323 (1995) L314.CrossRefGoogle Scholar
  59. [59]
    O. Marti, Nanotechnology (1995), in press.Google Scholar
  60. [60]
    P. Dietz, C.A. Ramos and P.K. Hansma, J. Vac. Sci. Technol. B 10 (1992) 741.CrossRefGoogle Scholar
  61. [61]
    N. Garcia, J. Chem. Phys. 67 (1977) 897.CrossRefGoogle Scholar
  62. [62]
    A.P. Sutton and J.B. Pethica, J. Phys. Condens. Matter 2 (1990) 5317.CrossRefGoogle Scholar
  63. [63]
    W.D. Luedtke and U. Landman, Comp. Mater. Sci. 1 (1992) 1.CrossRefGoogle Scholar
  64. [64]
    J.A. Nieminen, A.P. Sutton, J.B. Pethica and K. Kaski, Model. Simul. Mater. Sci. Eng. 1 (1992) 83.CrossRefGoogle Scholar
  65. [65]
    O. Tomagnini, F. Ercolessi and E. Tosatti, Surf. Sci. 287/288 (1993) 1041.CrossRefGoogle Scholar
  66. [66]
    J.A. Harrison, C.T. White, R.J. Colton and D.W. Brenner, J. Phys. Chem. 97 (1993) 6573.CrossRefGoogle Scholar
  67. [67]
    S.B. Sinnott, R.J. Colton, C.T. White and D.W. Brenner, Surf. Sci. 316 (1994) L1055.CrossRefGoogle Scholar
  68. [68]
    I.L. Singer, J. Vac. Sci. Technol. A 12 (1994) 2605.CrossRefGoogle Scholar
  69. [69]
    S. Ciraci, A. Baratoff and I.P. Batra, Phys. Rev. B 41 (1990) 2763.CrossRefGoogle Scholar
  70. [70]
    S. Ciraci, E. Tekman and A. Baratoff, Phys. Rev. B 46 (1992) 10411.CrossRefGoogle Scholar
  71. [71]
    D.V. Labeke, B. Labani and C. Girard, Chem. Phys. Lett. 162 (1989) 399.CrossRefGoogle Scholar
  72. [72]
    H. Tang, C. Joachim, J. Devillers and C. Girard, Europhys. Lett. 27 (1994) 383.Google Scholar
  73. [73]
    A.L. Shluger, A.L. Rohl, D.H. Gay and R.T. Williams, J. Phys.: Condens. Matter 6 (1994) 1825.CrossRefGoogle Scholar
  74. [74]
    A.L. Shluger, A.L. Rohl, R.M. Wilson and R.T. Williams, J. Vac. Sci. Technol. B (1995), in press.Google Scholar
  75. [75]
    A.L. Shluger, A.L. Rohl, R.T. Williams and R.M. Wilson, Phys. Rev. B (1995), in press.Google Scholar
  76. [76]
    A.L. Shluger, R.T. Williams and A.L. Rohl, Surf. Sci. (1995), submitted.Google Scholar
  77. [77]
    P.W. Tasker, Phil. Mag. A 39 (1979) 119.Google Scholar
  78. [78]
    D.H. Gay and A.L. Rohl, J. Chem. Soc. Faraday Trans. 91 (1995) 925.CrossRefGoogle Scholar
  79. [79]
    B.G. Dick and A.W. Overhauser, Phys. Rev. 112 (1958) 90.CrossRefGoogle Scholar
  80. [80]
    C.R.A. Catlow and A.M. Stoneham, eds., J. Chem. Soc. Faraday Trans. II 85 (1989), special issue.Google Scholar
  81. [81]
    D.M. Heyes, M. Barber and J.H.R. Clarke, J. Chem. Soc. Faraday Trans. II 73 (1977) 1485.CrossRefGoogle Scholar
  82. [82]
    R.W. Grimes, C.R.A. Catlow and A.M. Stoneham, J. Phys.: Condens. Matter 1 (1989) 7367.CrossRefGoogle Scholar
  83. [83]
    D.J. Binks, PhD Thesis, University of Surrey, UK (1994).Google Scholar
  84. [84]
    M. Bordag, G.L. Klimchitskaya and V.M. Mostepanenko, Surf. Sci. 328 (1995) 129.CrossRefGoogle Scholar
  85. [85]
    L. Howald, private communication.Google Scholar
  86. [86]
    S.G. Malghan, Colloids Surf. 62 (1992) 87.CrossRefGoogle Scholar
  87. [87]
    P. Saul, C.R.A. Catlow and J. Kendrick, Phil. Mag. B 51 (1985) 107.Google Scholar
  88. [88]
    T.R. Albrecht, P. Grütter, D. Horne and D. Rugar, J. Appl. Phys. 69 (1991) 668.CrossRefGoogle Scholar
  89. [89]
    F.J. Giessibl, Science 267 (1995) 68.Google Scholar
  90. [90]
    J.L. Gavartin, E.K. Shidlovskaya, A.L. Shluger and A.N. Varaksin, J. Phys.: Condens. Matter 3 (1991) 2237.CrossRefGoogle Scholar
  91. [91]
    R. Lüthi, E. Meyer, H. Haefke, L. Howald, W. Gutmannsbauer and H.-J. Güntherodt, Science 266 (1994) 1979.Google Scholar
  92. [92]
    R. Lüthi, H. Haefke, E. Meyer, L. Howald, H. Lang, G. Gerth and H.-J. Güntherodt, Z. Phys. B 95 (1994) 1.CrossRefGoogle Scholar
  93. [93]
    F.P. Bowden and D. Tabor,The Friction and Lubrication of Solids (Clarendon Press, Oxford, 1950).Google Scholar
  94. [94]
    G.M. McClelland, in:Adhesion and Friction, eds. M. Grunze and H.J. Kreuzer (Springer, Berlin, 1989) p. 1.Google Scholar
  95. [95]
    I.L. Singer and H.M. Pollock, eds.,Fundamentals of Friction (Kluwer, Dordrecht, 1992).Google Scholar
  96. [96]
    A.M. Stoneham, M.M.D. Ramos and A.P. Sutton, Phil. Mag. A 67 (1993) 797.Google Scholar
  97. [97]
    D.K. Rowell and M.J.L. Sangster, J. Phys. C 14 (1981) 2909.CrossRefGoogle Scholar

Copyright information

© J.C. Baltzer AG, Science Publishers 1996

Authors and Affiliations

  • Alexander L. Shluger
    • 1
  • Andrew L. Rohl
    • 2
  1. 1.The Royal Institution of Great BritainLondonUK
  2. 2.The Inorganic Chemistry LaboratoryOxfordUK

Personalised recommendations