Skip to main content
Log in

A model of the interaction of ionic tips with ionic surfaces for interpretation of scanning force microscope images

  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Scanning force microscopy (SFM) is an increasingly popular tool in surface studies. With the promise of lateral as well as vertical atomic resolution, its use is sure to become widespread in fields such as catalysis and crystal growth. However, the interpretation of the observed images is still unclear and therefore theoretical models are very important for an understanding of the imaging mechanism. We present a review of our recent calculations on the interaction between ionic tips and ionic surfaces and its effects on the scanning process. Our theoretical model of the SFM experiment combines an atomistic treatment of the interaction between a crystalline sample and the nanoasperity at the end of the tip with a semiempirical treatment of the mesoscopic van der Waals attraction between tip and surface and the macroscopic parameter of cantilever deflection. These static calculations based on total energy minimisation were used to determine the surface and tip geometries and energy as a function of tip height at each point of a scan. Scanlines of the perfect (001) surfaces of LiF and MgO were studied at different constant vertical forces exerted on the tip with and without jump to contact. Although scanlines showing lattice periodicity were obtained in some cases, the calculations demonstrate that the tip-surface interaction is a collective phenomenon with the tip probing several rows of surface ions. The calculations demonstrated a wide range of deformations of the tip and sample during a surface scan, and the (often reversible) interchange of material between the tip and sample. The conditions required for the resolution of point defects as well as the mechanism of friction are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Tabor and R.H.S. Winterton, Proc. Roy. Soc. A 312 (1969) 435.

    CAS  Google Scholar 

  2. J.N. Israelachvili and G.E. Adams, J. Chem. Soc. Faraday Trans. I 74 (1978) 975.

    Article  CAS  Google Scholar 

  3. J.N. Israelachvili,Intermolecular and Surface Forces (Academic Press, London, 1991).

    Google Scholar 

  4. W.A. Ducker, T.J. Sendem and R.M. Pashley, Langmuir 8 (1992) 1831.

    Article  CAS  Google Scholar 

  5. J.L. Parker, Langmuir 8 (1992) 551.

    Article  CAS  Google Scholar 

  6. H. Yoshizawa, Y. Chen and J. Israelachvili, J. Phys. Chem. 97 (1993) 4128.

    Article  CAS  Google Scholar 

  7. J. Georges, A. Tonck and D. Mazuyer, in:Forces in Scanning Probe Methods, eds. H.-J. Güntherodt, D. Anselmetti and E. Meyer (Kluwer, Dordrecht, 1995) p. 263.

    Google Scholar 

  8. G. Binnig, Ultramicroscopy 42–44 (1992) 7.

    Article  Google Scholar 

  9. E. Meyer, Progr. Surf. Sci. 41 (1992) 3.

    Article  CAS  Google Scholar 

  10. U. Dürig, O. Züger and A. Stalder, J. Appl. Phys. 72 (1992) 1778.

    Article  Google Scholar 

  11. N.A. Burnham, R.J. Colton and H.M. Pollock, Nanotechnology 4 (1993) 64.

    Article  CAS  Google Scholar 

  12. C.F. Quate, Surf. Sci. 299/300 (1994) 980.

    Article  Google Scholar 

  13. F.J. Giessibl, Jpn. J. Appl. Phys. 33 (1994) 3726.

    Article  CAS  Google Scholar 

  14. O. Marti and J. Colchero, in:Forces in Scanning Probe Methods, eds. H.-J. Güntherodt, D. Anselmetti and E. Meyer (Kluwer, Dordrecht, 1995) p. 15.

    Google Scholar 

  15. U. Dürig, in:Forces in Scanning Probe Methods, eds. H.-J. Güntherodt, D. Anselmetti and E. Meyer (Kluwer, Dordrecht, 1995) p. 191.

    Google Scholar 

  16. C.M. Mate, G.M. McClelland, R. Erlandsson and S. Chiang, Phys. Rev. Lett. 59 (1987) 1942.

    Article  CAS  Google Scholar 

  17. E. Meyer, H. Heinzelmann, P. Grutter, T. Jung, H. Hidber, H. Rudin and H.-J. Güntherodt, Thin Solid Films 181 (1989) 527.

    Article  CAS  Google Scholar 

  18. G. Meyer and N.A. Amer. Appl. Phys. Lett. 57 (1990) 2089.

    Article  CAS  Google Scholar 

  19. E. Meyer, R. Lüthi, L. Howald and H. Güntherodt, in:Forces in Scanning Probe Methods, eds. H.-J. Güntherodt, D. Anselmetti and E. Meyer (Kluwer, Dordrecht, 1995) p. 285.

    Google Scholar 

  20. L. Howald, H. Haefke, R. Lüthi, E. Mayer, G. Gerth, H. Rudin and H.-J. Güntherodt, Phys. Rev. B 49 (1994) 5615.

    Article  Google Scholar 

  21. L. Howald, R. Lüthi, E. Meyer, G. Gerth, H. Haefke, R. Overney and H.-J. Güntherodt, J. Vac. Sci. Technol. B 12 (1994) 2227.

    Article  CAS  Google Scholar 

  22. D.F. Ogletree, J. Hu, X. Xiao, C. Morant, Q. Dai, R. Vollmer, R. Carpick and M. Salmeron, in:Forces in Scanning Probe Methods, eds. H.-J. Güntherodt, D. Anselmetti and E. Meyer (Kluwer, Dordrecht, 1995) p. 337.

    Google Scholar 

  23. F. Ohnesorge and G. Binnig, Science 260 (1993) 1451.

    CAS  Google Scholar 

  24. M. Ohta, T. Konishi, Y. Sugawara, S. Morita, M. Suzuki and Y. Enomoto, Jpn. J. Appl. Phys. 32 (1993) 2980.

    Article  CAS  Google Scholar 

  25. A.L. Shluger, R.M. Wilson and R.T. Williams, Phys. Rev. B 49 (1994) 4915.

    Article  CAS  Google Scholar 

  26. R.M. Wilson, W.E. Pendelton and R.T. Williams, Radiat. Eff. Def. Solids 128 (1994) 79.

    CAS  Google Scholar 

  27. H.C. Hamaker, Physica 4 (1937) 1058.

    CAS  Google Scholar 

  28. E.M. Lifshitz, Soviet Phys. JETP 2 (1956) 73.

    Google Scholar 

  29. U. Hartmann, Phys. Rev. B 42 (1990) 1541.

    Article  Google Scholar 

  30. F.O. Goodman and N. Garcia, Phys. Rev. B 43 (1991) 4728.

    Article  Google Scholar 

  31. N. Garcia and V.T. Binh, Phys. Rev. B 46 (1992) 7946.

    Article  Google Scholar 

  32. S.P. Jarvis and J.B. Pethica, in:Forces in Scanning Probe Methods, eds. H.-J. Güntherodt, D. Anselmetti and E. Meyer (Kluwer, Dordrecht, 1995) p. 105.

    Google Scholar 

  33. J.P. Pethica and A.P. Sutton, J. Vac. Sci. Technol. A 6 (1988) 2494.

    Article  Google Scholar 

  34. U. Landman, W.D. Luedtke, N.A. Burnham and R.J. Colton, Science 248 (1990) 454.

    CAS  Google Scholar 

  35. A.L. Weisenhorn, P. Maivald, H. Butt and P.K. Hansma, Phys. Rev. B 45 (1992) 11226.

    Article  Google Scholar 

  36. O. Marti, B. Drake and P.K. Hansma, Appl. Phys. Lett. 51 (1987) 484.

    Article  CAS  Google Scholar 

  37. J.L. Hutter and J. Bechhoefer, J. Appl. Phys. 73 (1993) 4123.

    Article  CAS  Google Scholar 

  38. J.E. MacDougall, S.D. Cox, G.D. Stucky, A.L. Weisenhorn, P.K. Hansma and W.S. Wise, Zeolites 11 (1991) 426.

    Article  Google Scholar 

  39. A.L. Weisenhorn, J.E. MacDougall, S.A.C. Gould, S.D. Cox, W.S. Wise, J. Massie, P. Maivald, V.B. Elings, G.D. Stucky and P.K. Hansma, Science 247 (1990) 1330.

    CAS  Google Scholar 

  40. A.J. Gratz, P.E. Hillner and P.K. Hansma, Geochim. Cosmochim. Acta 57 (1993) 491.

    Article  CAS  Google Scholar 

  41. J.H. Hoh, J.P. Cleveland, C.B. Prater, J.-P. Revel and P.K. Hansma, J. Am. Chem. Soc. 114 (1992) 4917.

    Article  CAS  Google Scholar 

  42. E. Meyer, H. Heinzelmann, D. Brodbeck, G. Overney, R. Overney, L. Howald, H. Hug, T. Jung, H. Hidber and H.-J. Güntherodt, J. Vac. Sci. Technol. B 9 (1991) 1329.

    Article  CAS  Google Scholar 

  43. H. Heinzelmann, E. Mayer, D. Brodbeck, G. Overney and H.-J. Güntherodt, Z. Phys. B 88 (1992) 321.

    Article  Google Scholar 

  44. R.M. Overney, H. Haefke, E. Meyer and H.-J. Güntherodt, Surf. Sci. Lett. 277 (1992) L29.

    Article  CAS  Google Scholar 

  45. E. Meyer, H. Heinzelmann, P. Grütter, H. Hidber and H.-J. Güntherodt, J. Appl. Phys. 66 (1989) 4243.

    Article  CAS  Google Scholar 

  46. H. Heinzelmann, E. Meyer, H.-J. Güntherodt and R. Steiger, Surf. Sci. 221 (1989) 1.

    Article  CAS  Google Scholar 

  47. R.C. Barrett and C.F. Quate, J. Vac. Sci. Technol. A 8 (1990) 400.

    Article  CAS  Google Scholar 

  48. E. Perrot, M. Dayez, A. Humbert, O. Marti, C. Chapon and C.R. Henry, Europhys. Lett. 26 (1994) 659.

    CAS  Google Scholar 

  49. H. Shindo and H. Nozoye, J. Chem. Soc. Faraday Trans. 88 (1992) 711.

    Article  CAS  Google Scholar 

  50. H. Shindo and H. Nozoye, Surf. Sci. 287/288 (1993) 1030.

    Article  Google Scholar 

  51. M. Komiyama and T. Yashima, Jpn. J. Appl. Phys. 33 (1994) 3761.

    Article  CAS  Google Scholar 

  52. B. Wassermann, J. Reif and E. Matthias, Phys. Rev. B 50 (1994) 2593.

    Article  CAS  Google Scholar 

  53. F.J. Giessibl and G. Binnig, Ultramicroscopy 42–44 (1992) 281.

    Article  Google Scholar 

  54. G. Reiss, H. Bückel, J. Vancea, R. Lecheler and E. Hastreiter, J. Appl. Phys. 70 (1991) 523.

    Article  Google Scholar 

  55. D.A. Grigg, P.E. Russell, J.E. Griffith, M.J. Vasile and E.A. Fitzgerald, Ultramicroscopy 42–44 (1992) 1616.

    Article  Google Scholar 

  56. S.S. Sheiko, M. Möller, E.M.C.M. Reuvekamp and H.W. Zandbergen, Phys. Rev. B 48 (1993) 5675.

    Article  CAS  Google Scholar 

  57. C. Odin, J.P. Aimá, Z.E. Kaakour and T. Bouhacina, Surf. Sci. 317 (1994) 321.

    Article  CAS  Google Scholar 

  58. F. Atamny and A. Baiker, Surf. Sci. 323 (1995) L314.

    Article  CAS  Google Scholar 

  59. O. Marti, Nanotechnology (1995), in press.

  60. P. Dietz, C.A. Ramos and P.K. Hansma, J. Vac. Sci. Technol. B 10 (1992) 741.

    Article  CAS  Google Scholar 

  61. N. Garcia, J. Chem. Phys. 67 (1977) 897.

    Article  CAS  Google Scholar 

  62. A.P. Sutton and J.B. Pethica, J. Phys. Condens. Matter 2 (1990) 5317.

    Article  Google Scholar 

  63. W.D. Luedtke and U. Landman, Comp. Mater. Sci. 1 (1992) 1.

    Article  CAS  Google Scholar 

  64. J.A. Nieminen, A.P. Sutton, J.B. Pethica and K. Kaski, Model. Simul. Mater. Sci. Eng. 1 (1992) 83.

    Article  Google Scholar 

  65. O. Tomagnini, F. Ercolessi and E. Tosatti, Surf. Sci. 287/288 (1993) 1041.

    Article  Google Scholar 

  66. J.A. Harrison, C.T. White, R.J. Colton and D.W. Brenner, J. Phys. Chem. 97 (1993) 6573.

    Article  CAS  Google Scholar 

  67. S.B. Sinnott, R.J. Colton, C.T. White and D.W. Brenner, Surf. Sci. 316 (1994) L1055.

    Article  CAS  Google Scholar 

  68. I.L. Singer, J. Vac. Sci. Technol. A 12 (1994) 2605.

    Article  CAS  Google Scholar 

  69. S. Ciraci, A. Baratoff and I.P. Batra, Phys. Rev. B 41 (1990) 2763.

    Article  Google Scholar 

  70. S. Ciraci, E. Tekman and A. Baratoff, Phys. Rev. B 46 (1992) 10411.

    Article  Google Scholar 

  71. D.V. Labeke, B. Labani and C. Girard, Chem. Phys. Lett. 162 (1989) 399.

    Article  Google Scholar 

  72. H. Tang, C. Joachim, J. Devillers and C. Girard, Europhys. Lett. 27 (1994) 383.

    CAS  Google Scholar 

  73. A.L. Shluger, A.L. Rohl, D.H. Gay and R.T. Williams, J. Phys.: Condens. Matter 6 (1994) 1825.

    Article  CAS  Google Scholar 

  74. A.L. Shluger, A.L. Rohl, R.M. Wilson and R.T. Williams, J. Vac. Sci. Technol. B (1995), in press.

  75. A.L. Shluger, A.L. Rohl, R.T. Williams and R.M. Wilson, Phys. Rev. B (1995), in press.

  76. A.L. Shluger, R.T. Williams and A.L. Rohl, Surf. Sci. (1995), submitted.

  77. P.W. Tasker, Phil. Mag. A 39 (1979) 119.

    CAS  Google Scholar 

  78. D.H. Gay and A.L. Rohl, J. Chem. Soc. Faraday Trans. 91 (1995) 925.

    Article  CAS  Google Scholar 

  79. B.G. Dick and A.W. Overhauser, Phys. Rev. 112 (1958) 90.

    Article  CAS  Google Scholar 

  80. C.R.A. Catlow and A.M. Stoneham, eds., J. Chem. Soc. Faraday Trans. II 85 (1989), special issue.

  81. D.M. Heyes, M. Barber and J.H.R. Clarke, J. Chem. Soc. Faraday Trans. II 73 (1977) 1485.

    Article  CAS  Google Scholar 

  82. R.W. Grimes, C.R.A. Catlow and A.M. Stoneham, J. Phys.: Condens. Matter 1 (1989) 7367.

    Article  CAS  Google Scholar 

  83. D.J. Binks, PhD Thesis, University of Surrey, UK (1994).

  84. M. Bordag, G.L. Klimchitskaya and V.M. Mostepanenko, Surf. Sci. 328 (1995) 129.

    Article  CAS  Google Scholar 

  85. L. Howald, private communication.

  86. S.G. Malghan, Colloids Surf. 62 (1992) 87.

    Article  CAS  Google Scholar 

  87. P. Saul, C.R.A. Catlow and J. Kendrick, Phil. Mag. B 51 (1985) 107.

    CAS  Google Scholar 

  88. T.R. Albrecht, P. Grütter, D. Horne and D. Rugar, J. Appl. Phys. 69 (1991) 668.

    Article  Google Scholar 

  89. F.J. Giessibl, Science 267 (1995) 68.

    CAS  Google Scholar 

  90. J.L. Gavartin, E.K. Shidlovskaya, A.L. Shluger and A.N. Varaksin, J. Phys.: Condens. Matter 3 (1991) 2237.

    Article  CAS  Google Scholar 

  91. R. Lüthi, E. Meyer, H. Haefke, L. Howald, W. Gutmannsbauer and H.-J. Güntherodt, Science 266 (1994) 1979.

    Google Scholar 

  92. R. Lüthi, H. Haefke, E. Meyer, L. Howald, H. Lang, G. Gerth and H.-J. Güntherodt, Z. Phys. B 95 (1994) 1.

    Article  Google Scholar 

  93. F.P. Bowden and D. Tabor,The Friction and Lubrication of Solids (Clarendon Press, Oxford, 1950).

    Google Scholar 

  94. G.M. McClelland, in:Adhesion and Friction, eds. M. Grunze and H.J. Kreuzer (Springer, Berlin, 1989) p. 1.

    Google Scholar 

  95. I.L. Singer and H.M. Pollock, eds.,Fundamentals of Friction (Kluwer, Dordrecht, 1992).

    Google Scholar 

  96. A.M. Stoneham, M.M.D. Ramos and A.P. Sutton, Phil. Mag. A 67 (1993) 797.

    CAS  Google Scholar 

  97. D.K. Rowell and M.J.L. Sangster, J. Phys. C 14 (1981) 2909.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shluger, A.L., Rohl, A.L. A model of the interaction of ionic tips with ionic surfaces for interpretation of scanning force microscope images. Top Catal 3, 221–247 (1996). https://doi.org/10.1007/BF02431186

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02431186

Keywords

Navigation