Journal of Mathematical Sciences

, Volume 74, Issue 4, pp 1142–1144 | Cite as

Steady longitudinal vibrations of the components of cylindrically anisotropic plates

  • M. N. Gofman
  • A. S. Kosmodamianskii
Article
  • 15 Downloads

Abstract

Using the perturbation method we solve the problem of steady longitudinal vibrations of cylindrically anisotropic plates consisting of a finite number of circular rings welded together. A numerical study is carried out for a five-layer plate in the case when the outer boundary is subject to a load and the inner boundary is load-free. The graphs of the stress distributions are given. Two figures. Bibliography: 5 titles.

Keywords

Recurrence Relation Outer Boundary Polar Coordinate System Longitudinal Vibration Circular Ring 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    A. S. Kosmodamianskii, “Periodic vibrations of elastic multiply connected bodies,”Vestn. Akad. Nauk Ukr. SSR, No. 4, 12–26 (1988).Google Scholar
  2. 2.
    M. N. Gofman, A. S. Kosmodamianskii, and A. M. Kravtsov, “Longitudinal Vibrations of a Component of an Isotropic Plate,”Teoret. i Prikl. Mekh., No. 20, 63–67 (1989).Google Scholar
  3. 3.
    A. S. Kosmodamianskii and M. N. Gofman, “Steady longitudinal vibrations of the components of flat plates with a large number of component rings,”Dokl. Akad. Nauk Ukr. SSR, Ser. A, No. 9, 46–50 (1989).Google Scholar
  4. 4.
    S. G. LekhnitskiiAnisotropic Plates [in Russian], Moscow (1957).Google Scholar
  5. 5.
    V. I. Petrishin, A. K. Privarnikov, and Yu. A. Shevlyakov, “On the solution of problems for multilayer bases,”Izv. Akad. Nauk SSSR. Mekh., No. 2, 138–143 (1965).Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • M. N. Gofman
  • A. S. Kosmodamianskii

There are no affiliations available

Personalised recommendations