Medical and Biological Engineering and Computing

, Volume 43, Issue 6, pp 694–702 | Cite as

Resistor mesh model of a spherical head: Part 1: Applications to scalp potential interpolation

  • N. Chauveau
  • J. P. Morucci
  • X. Franceries
  • P. Celsis
  • B. Rigaud


A resistor mesh model (RMM) has been implemented to describe the electrical properties of the head and the configuration of the intracerebral current sources by simulation of forward and inverse problems in electroencephalogram/ event related potential (EEG/ERP) studies. For this study, the RMM representing the three basic tissues of the human head (brain, skull and scalp) was superimposed on a spherical volume mimicking the head volume: it included 43 102 resistances and 14 123 nodes. The validation was performed with reference to the analytical model by consideration of a set of four dipoles close to the cortex. Using the RMM and the chosen dipoles, four distinct families of interpolation technique (nearest neighbour, polynomial, splines and lead fields) were tested and compared so that the scalp potentials could be recovered from the electrode potentials. The 3D spline interpolation and the inverse forward technique (IFT) gave the best results. The IFT is very easy to use when the lead-field matrix between scalp electrodes and cortex nodes has been calculated. By simple application of the Moore-Penrose pseudo inverse matrix to the electrode cap potentials, a set of current sources on the cortex is obtained. Then, the forward problem using these cortex sources renders all the scalp potentials.


EEG/ERP Modelling Interpolation Resistor 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ashida, H., Tatsuno, J., Okamoto, J., andMaru, E. (1984): ‘Field mapping of EEG by unbiased polynomial interpolation’,Comput. Biomed. Res.,17, pp. 267–276CrossRefGoogle Scholar
  2. Biggins, C. A., Fein, G., Raz, J., andAmir, A. (1991): ‘Artifactually high coherences result from using spherical spline computation of scalp current density’,Electroencephalogr Clin Neurophysiol,79, pp. 413–419CrossRefGoogle Scholar
  3. Chauveau, N., Franceries, X., Doyon, B., Rigaud, B., Morucci, J. P., andCelsis, P. (2004). ‘Effects of skull thickness, anisotropy, and inhomogeneity on forward EEG/ERP computations using a spherical three-dimensional resistor mesh model’.Hum. Brain Mapp.,21, pp. 86–97CrossRefGoogle Scholar
  4. Duchon, J. (1976): ‘Interpolation des fonctions de deux variables suivant le principe de la flexion des plaques minces’,RAIRO Anal Num,10, pp. 5–12MathSciNetGoogle Scholar
  5. Franceries, X., Doyon, B., Chauveau, N., Rigaud, B., Celsis, P., andMorucci, J. P. (2003): ‘Solution of Poisson's equation in a volume conductor using resistor mesh models: application to event related potential imaging’,J. Appl. Phys.,93, pp. 3578–3588CrossRefGoogle Scholar
  6. Geddes, L. A., andBaker, L. E. (1967): ‘The specific resistance of biological material—a compendium of data for the biomedical engineer and physiologist’,Med. Biol. Eng.,5, pp. 271–293Google Scholar
  7. Harder, R. L., andDesmarais, R. N. (1972): ‘Interpolation using surface splines’.J Aircraft.9, pp. 189–191CrossRefGoogle Scholar
  8. Hardy, R. L. (1971): ‘Multiquadric equations of topography and other irregular surfaces’,J. Geophys. Res.,76, pp. 1905–1915.CrossRefGoogle Scholar
  9. Hoekema, R., Huiskamp, G. J., Oostendorp, T. F., Uijen, G. J., andvan Oosterom, A. (1995): ‘Lead system transformation for pooling of body surface map data: a surface Laplacian approach’,J. Electrocardiol.,28, pp. 344–345CrossRefGoogle Scholar
  10. Junghofer, M., Elbert, T., Leiderer, P., Berg, P., andRockstroh, B. (1997): ‘Mapping EEG-potentials on the surface of the brain: a strategy for uncovering cortical sources’,Brain Topogr,9, pp. 203–217CrossRefGoogle Scholar
  11. Koles, Z. J., Kasmia, A., Paranjape, R. B., andMcLean, D. R. (1989): ‘Computed radial-current topography of the brain: patterns associated with the normal and abnormal EEG’,Electroencephalogr. Clin. Neurophysiol.,72, pp. 41–47CrossRefGoogle Scholar
  12. Law, S. K. (1991): ‘Spline generated surface Laplacian estimates for improving spatial resolution in electroencephalography’.Ph D dissertation, Dept. Biomed Eng., Tulane Univ, New Orleans, LA USAGoogle Scholar
  13. Law, S. K., Nunez, P. L., andWijesinghe, R. S. (1993): ‘High-resolution EEG using spline generated surface Laplacians on spherical and ellipsoidal surfaces’,IEEE Trans. Biomed. Eng.,40, 145–153CrossRefGoogle Scholar
  14. Mattout, J. (2002): ‘Approches statistiques multivariées pour la localisation de la localisation de l'activité cérébrale en magnétoencéphalographie et en imagerie par résonance magnétique fonctionnelle. Vers une fusion d'informations multimodales’.Ph D dissertation, Univerté de Paris, VI., France Google Scholar
  15. Meijs, J. W., Weier, O. W., Peters, M. J., andvan Oosterom, A. (1989). ‘On the numerical accuracy of the boundary element method’,IEEE. Trans. Biomed. Eng.,36, pp. 1038–1049.CrossRefGoogle Scholar
  16. Nielson, M., Foley, T. A., Hamann, B., andLane, D. (1991): ‘Visualizing and modeling scattering multivariate data’,IEEE Comput Graph Appl.,11, pp. 47–55CrossRefGoogle Scholar
  17. Oostendorp, T. F., andvan Oosterom, A. (1996): ‘The surface Laplacian of the potential: theory and application’,IEEE. Trans. Biomed. Eng.,43, pp. 394–405CrossRefGoogle Scholar
  18. Oostendorp, T. F., Delbeke, J., andStegeman, D. F. (2000): ‘The conductivity of the human skull: results ofin vivo andin vitro measurements’,IEEE Trans. Biomed. Eng.,47, pp. 1487–1492CrossRefGoogle Scholar
  19. Perrin, F., Pernier, J., Bertrand, O., Giard, M. H., andEchallier, J. F. (1987a): ‘Mapping of scalp potentials by surface spline interpolation’,Electroencephalogr. Clin. Neurophysiol.,66, pp. 75–81CrossRefGoogle Scholar
  20. Perrin, F., Bertrand, O., andPernier, J. (1987b): ‘Scalp current density mapping: value and estimation from potential data’,IEEE Trans. Biomed. Eng.,34, pp. 283–288Google Scholar
  21. Perrin, F., Pernier, J., Bertrand, O., andEchallier, J. F. (1989): ‘Spherical splines for scalp potential and current density mapping’,Electroencephalogr. Clin. Neurophysiol.,72, pp. 184–187CrossRefGoogle Scholar
  22. Pidoux, B., andPoirot, F. (1990): ‘Tridimensional cartography of potentials recorded on the human scalp: I. Interpolation with tridimensional functions’,C. R. Acad. Sci. III,311, pp. 1–6.Google Scholar
  23. Rush, S., andDriscoll, D. A. (1969): ‘EEG electrode sensitivity—an application of reciprocity’,IEEE. Trans. Biomed. Eng.,16, pp. 15–22.Google Scholar
  24. Soong, A. C., Lind, J. C., Shaw, G. R., andKoles, Z. J. (1993): ‘Systematic comparisons of interpolation techniques in topographic brain mapping’,Electroencephalogr. Clin. Neurophysiol.,87, pp. 185–195CrossRefGoogle Scholar
  25. Soufflet, L., Toussaint, M., Luthringer, R., Gresser, J., Minot, R., andMacher, J. P. (1991): ‘A statistical evaluation of the main interpolation methods applied to 3-dimensional EEG mapping’,Electroencephalogr. Clin. Neurophysiol.,79, pp. 393–402CrossRefGoogle Scholar
  26. Srinivasan, R., Nunez, P. L., Tucker, D. M., Silberstein, R. B., andCadusch, P. J. (1996): ‘Spatial sampling and filtering of EEG with spline laplacians to estimate cortical potentials’,Brain Topogr.,8, pp. 355–366CrossRefGoogle Scholar
  27. Thevenet, M., Bertrand, O., Perrin, F., Dumont, T., andPernier, J. (1991): ‘The finite element method for a realistic head model of electrical brain activities: preliminary results’,Clin. Phys. Physiol. Meas.,12, pp. 89–94.Google Scholar
  28. Valentinuzzi, M. E., Morucci, J. P., andFelice, C. J. (1996): ‘Bioelectrical impedance techniques in medicine’,Crit. Rev. Biomed. Eng.,24, pp. 353–466Google Scholar
  29. Wahba, G. (1981): ‘Spline interpolation and smoothing on the sphere’,SIAM J. Sci. Stat. Comp, pp. 5–16Google Scholar
  30. Wahba, G. (1982): ‘Erratum: Spline interpolation and smoothing on the sphere’,SIAM J. Sci. Stat. Comp., pp. 385–386Google Scholar
  31. Yvert, B., Bertrand, O., Echallier, J. F., andPernier, J. (1995): ‘Improved forward EEG calculations using local mesh refinement of realistic head geometries’,Electroencephalogr. Clin. Neurophysiol.,95, pp. 381–392CrossRefGoogle Scholar

Copyright information

© IFMBE 2005

Authors and Affiliations

  • N. Chauveau
    • 1
  • J. P. Morucci
    • 1
    • 2
  • X. Franceries
    • 2
  • P. Celsis
    • 1
  • B. Rigaud
    • 2
    • 3
  1. 1.Institut National de la Santé et de la Recherche MédicaleToulouseFrance
  2. 2.Paul Sabatier UniversityToulouseFrance
  3. 3.Jean-François Champollion University CenterCastresFrance

Personalised recommendations