Skip to main content
Log in

Prospects for use of microbial raw material for fabrication of fibre and film materials. Review

  • Published:
Fibre Chemistry Aims and scope

Abstract

The potential capacity of microorganisms to form fibre structures, fibre- and film-forming polymers, and the monomers for their chemical synthesis was analyzed. The applied aspects of fabrication of oriented polymer materials (fibres and films) from the cellular biomass of fungi, bacteria, individual products of cell metabolism (organic acids, amino acids), and biopolymers (enzymes) were examined. The role of microbial technologies in utilization of the new raw material resources for fabrication of fibres and films, in improving production of existing types of fibres, and in creating new types of fibre materials of natural origin was evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. A. Bykov, Biotekhnologiya, No. 6, 692–700 (1987).

    Google Scholar 

  2. M. R. Baker, A. N. Emery, and C. S. Easthope, “Modelling oxygen uptake in mycelial suspensions using microfibres of immobilised bacteria,≓ in: Proc. 4th Eur. Congr. Biotechnol., Vol. 1, Amsterdam (June 14–19, 1987), pp. 218–221.

    Google Scholar 

  3. “Biotechnologie in textilen Prozessen,≓ Textiltechnik,36, No. 12, 696–697 (1986).

  4. I. Higgins, D. Best, and J. Johnson (eds.), Biotechnology: Principles and Application [Russian translation], Mir, Moscow (1988).

    Google Scholar 

  5. N. H. Mendelson, Bioprocess. Technol.,12, No. 1, 6 (1990).

    Google Scholar 

  6. “Textile industry to explore biopigments and use microfungal filaments in wound dressing,≓ Biotechnol. Bull.,8, No. 12, 8–9 (1990).

  7. D. S. Kenney and S. H. Woodhead, Dev. Ind. Microbiol., Vol.24, Proc. 39th Gen. Meet. Soc. Ind. Microbiol., St. Paul Minn., Aug. 14–20, 1982, Arlington Va. (1983), pp. 31–43.

    Google Scholar 

  8. Dr. Sagar, “Biotechnology and textile industry,≓ Colourade,30, No. 14, 41–42 (1983).

    Google Scholar 

  9. A. Ya. Teslenko and V. G. Popova, “Chitin and its production in biotechnology,≓ Data Sheet, Ser. V., Preparation and Use of Enzymes, Vitamins, and Amino Acids [in Russian], No. 3, Moscow (1982), p. 44.

    Google Scholar 

  10. N. P. Elinov, Usp. Mikrobiol., No. 17, 158–177 (1982).

    Google Scholar 

  11. N. G. Rybal'skii and O. M. Komarova, Biotechnology of Polysaccharides [in Russian], Biotechnology Ser., VNIIPI, Moscow (1990).

    Google Scholar 

  12. “Microbes make polysaccharides from hemicellulose,≓ Bioprocess Technol., No. 6, 6–67 (1989).

  13. A. Ya. Ozola, I. G. Veinberga, et al., Izv. Akad. Nauk Latv. SSR, No. 5, 96–98 (1988).

    Google Scholar 

  14. S. Yuens, Proc. Biochem.,9, 4–9 (1974).

    Google Scholar 

  15. C. W. Gooday, Propr. Ind. Microbiol., Amsterdam, No. 35, 127 (1983).

    Google Scholar 

  16. G. Annison and L. Canperwhite, Austral. J. Bio. Sci.,40, No. 4, 435–441 (1987).

    CAS  Google Scholar 

  17. L. I. Vorob'eva, Industrial Microbiology [in Russian], Izd. MGU, Moscow (1989).

    Google Scholar 

  18. I. F. Kennedy and C. A. White, Bioactive Carbohydrates in Chemistry, Biochemistry and Biology, Ellis Horwood, New York (1983), pp. 98–308.

    Google Scholar 

  19. R. I. Gvozdyak, M. S. Malyshevskaya, et al., The Microbial Polysaccharide Xanthate [in Russian], Naukova Dumka, Kiev (1989).

    Google Scholar 

  20. K. Sattler and S. Fiedler, Zbl. Mikrobiol.,145, No. 4, 247–252 (1990).

    CAS  Google Scholar 

  21. M. Takai, F. Nonomura, and T. Inuki, Fibre,47, No. 3, 119–129 (1991).

    CAS  Google Scholar 

  22. “Recombinant industrial polymers: feasible for special applications,≓ Genet. Technol. News,7, No. 3, 6–7 (1987).

  23. “Bioengineers produce spider silk fromE. coli,≓ Curr. Comments: Newsletter. Discovery and Innovation,2, No. 11, 4 (1988).

    Google Scholar 

  24. E. Murray, M. Donald, et al., Production of Protein Fibre, Canadian Patent No. 1103307, filed on February 3, 1978, published on June 30, 1981.

  25. “Biodegradable plastics update,≓ Bioprocess Technol.,10, No. 6, 3–6 (1988).

  26. A. M. Bezborodov, Enzymatic Reactions in Biotechnology: 48th Bakhov Reading [in Russian], Nauka, Moscow (1994).

    Google Scholar 

  27. Yoshiharu Doi, Akira Tamaki, et al., Appl. Microbiol. Biotechnol.,28, No. 25, 330–334 (1988).

    Article  CAS  Google Scholar 

  28. T. R. Burrow and P. R. Laity, “Novel routes to the manufacture of polysaccharide fibres,≓ in: World Biotechn. Rept. 1986: Proc. Biotechn. 86, London, May 1986, Vol. 1, London, New York (1986), pp. 201–209.

    Google Scholar 

  29. Shaped Solid Article from Pullulan Ether, Method of Its Preparation, and Area of Application, US Patent No. 3870537, Int. Cl. C 08 B 25/00, filed on February 25, 1974, published on March 11, 1975; RI IZR, No. 4, 19 (1975).

  30. T. Harada, “Production, properties and application of curdlan extracellular microbial polysaccharides,≓ in: ACS Symp., Ser. 45, Washington (1977), pp. 265–283.

  31. S. V. Gorokhova, I. I. Shamolina, and E. P. Anan'eva, Khim. Volokna, No. 3, 57 (1992).

    Google Scholar 

  32. S. V. Gorokhova, I. I. Shamolina, and V. F. Danilichev, “Microbial polysaccharide films,≓ in: Proceedings of the All-Union Conference Results and Prospects for Scientific Research in Biotechnology and Pharmaceutics [in Russian], Leningrad (1989), pp. 129–130.

  33. S. Kawasaki, J. Jpn. Soc. Food Sci. Technol.,31, No. 2, 72–78 (1984).

    CAS  Google Scholar 

  34. I. P. Dobrovol'skaya, N. L. Kuz'mina, et al., Khim. Volokna, No. 5, 18–19 (1992).

    Google Scholar 

  35. G. K. Liepin'sh and M. E. Duntse, Raw Material and Nutrient Substrates for Industrial Biotechnology [in Russian], Zinatne, Riga (1986).

    Google Scholar 

  36. “Production of biodegradation polylactide plastic,≓ Chem. Eng.,96, No. 2, 19 (1989).

  37. “Synthesis of nylon raw materials using biotechnology,≓ CEER, Chem. Econ. Eng. Rev., Nos. 1–2, 35–36 (1986).

  38. S. J. Barer, P. C. Maxwell, and J. H. Hsieh, Production of Nylon 6.6 Salt, US Patent No. 4725542, Int. Cl. C12P13/00, filed on January 13, 1983, published on February 16, 1988.

  39. T. Hayaschi, J. Takanashi, and A. Nakajima, J. Soc. Fibre, Sci. Technol. Jpn.,43, No. 9, 462–470 (1987).

    Google Scholar 

  40. “Novo solves pollution problems in caprolactam synthesis,≓ Bioprocess. Technol.,8, No. 10, 7 (1986).

  41. E. Ya. Vaiman, L. S. Gerasimova, et al., Khim. Volokna, No. 6, 38–40 (1979).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Khimicheskie Volokna, No. 1, pp. 3–10, January–February, 1997.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shamolina, I.I. Prospects for use of microbial raw material for fabrication of fibre and film materials. Review. Fibre Chem 29, 1–8 (1997). https://doi.org/10.1007/BF02430677

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02430677

Keywords

Navigation