Journal of Nonlinear Science

, Volume 4, Issue 1, pp 355–374 | Cite as

Predicting eddy detachment for an equivalent barotropic thin jet

  • E. A. Ralph
  • L. Pratt
Article

Summary

The time-dependent meandering of thin ocean jets in reduced gravity models has recently been shown to obey a natural coordinate version of the standard modified Korteweg-deVries (mKdV) equation. The detachment of eddies from such a jet begins when different segments of the jet path come into contact, causing the initially simply connected jet to “pinch” together. It is shown that this pinching process is effected primarily by breather solutions to the mKdV equation. For a given initial condition the solution will evolve into a dispersive wave train plus a finite number of breathers, the connectivity of which is determined by a steepness parameter λ. Using the scattering transform for the mKdV equation the value(s) of λ can be calculated in a straightforward manner, and the detachment (or lack thereof) of meanders can be forecast to a high degree of confidence by calculating λ. Examples with simple meander disturbances show a remarkable degree of stability and resistance to detachment.

Key words

breather inverse scattering transform modified Korteweg-deVries equation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Ablowitz, M. J., Kaup, D. J., Newell, A. C., and Segur, H. The inverse scattering transform—Fourier analysis for nonlinear problems.Stud. Appl. Math., 53:249–315, 1974.MathSciNetGoogle Scholar
  2. [2]
    Cushman-Roisin, B., Pratt, L. J., and Ralph, E. A. A general theory for equivalent barotropic thin jets.J. Phys. Oceangr., 23:91–103, 1992.CrossRefGoogle Scholar
  3. [3]
    Flierl, G. R., and Robinson, A. R. On the time dependent meandering of a thin jet.J. Phys. Oceangr., 14:412–443, 1984.CrossRefGoogle Scholar
  4. [4]
    Goldstein, R. E., and Petrich D. M.Phys. Rev. Lett., 67:3203, 1991.MathSciNetCrossRefMATHGoogle Scholar
  5. [5]
    Gruzinov, A. V. Contour dynamics of the Hasegawa-Mima equation.Pis. Zh. Eksp. Teor. Fiz. (JETP Lett.), 55:76, 1992.Google Scholar
  6. [6]
    Lamb, G. L.Elements of Soliton Theory. Wiley, New York, 1980.MATHGoogle Scholar
  7. [7]
    Nycander, J. Dritschell, D. G., and Sutyrin, G. G. The dynamics of long frontal waves in the shallo2 water equations.Phys. Fluids A, 5:1089–1091, 1993.MathSciNetCrossRefMATHGoogle Scholar
  8. [8]
    Pratt, L. J. Meandering and eddy detachment according to a simple (looking) path equation.J. Phys. Oceangr., 18:1627–1640, 1988.CrossRefGoogle Scholar
  9. [9]
    Pratt, L. J., and Stern, M. E. Dynamics of potential vorticity fronts and eddy detachment.J. Phys. Oceangr., 16:1101–1120, 1986.CrossRefGoogle Scholar
  10. [10]
    Ralph, R. A. Predicting eddy detachment from thin jets. Master's thesis, Massachusetts Institute of Technology, 1991.Google Scholar
  11. [11]
    Redekopp, L. G. On the theory of solitary Rossby waves.J. Fluid Mech., 82:725–745, 1977.MATHMathSciNetCrossRefGoogle Scholar
  12. [12]
    Robinson, A. R., Spall, M., and Pinardi, N. Gulf-Stream simulations and the dynamics of ring and meander processes.J. Phys. Oceangr., 18:1811–1853, 1988.CrossRefGoogle Scholar
  13. [13]
    Warren, B. A. Topographic influences on the path of the Gulf Stream.Tellus, 15:167–183, 1963.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York Inc 1994

Authors and Affiliations

  • E. A. Ralph
    • 1
  • L. Pratt
    • 1
  1. 1.Woods Hole Oceanographic InstitutionWoods HoleUSA

Personalised recommendations