Journal of Nonlinear Science

, Volume 4, Issue 1, pp 69–103 | Cite as

Mixed-mode oscillation genealogy in a compartmental model of bone mineral metabolism

  • P. Tracqui


A well-supported self-oscillating eight-compartment model has been proposed by Staub et al. to account for thein vivo rat calcium metabolism (Staub et al.,Am. J. Physiol.254, R134–139, 1988). The nonlinear nucleus of this model is a three-compartment subunit which represents the dynamic autocatalytic processes of phase transition at the interface between bone and extracellular fluids. The organization of the temporal mixed-mode oscillations which successively appear as the calcium input is varied is analyzed. On one side of the bifurcation diagram, the generation of periodic trajectories with a single large amplitude oscillation is governed by homoclinic tangencies to small amplitude limit cycles and follows the universal sequence (U-sequence) given for the periodic solutions of unimodal transformations of the unit interval into itself. On the other side, the progressive appearance and interweaving of trajectories with multiple large amplitude oscillations per period is linked to homoclinic tangencies to large amplitude unstable cycles. The bifurcation sequence responsible for the temporal pattern generation has been analyzed by modeling the first return map of the differential system associated with the compartmental subunit. We establish that this genealogy does not follow the usual Farey treelike organization and that a comprehensive view of the resulting fractal bifurcation structure can be obtained from the unfolding of singular points of bimodal maps. These theoretical features can be compared with those reported in experiments on dissolution processes, and the extent to which the knowledge of the subunit bifurcation structure provides new conceptual insights in the field of bone and calcium metabolism is discussed.

Key words

autocatalysis piecewise linear maps interfacial processes homoclinic tangency 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albahadily, F. N., and Schell, M.: An experimental investigation of periodic and chaotic electrochemical oscillations in the anodic dissolution of copper in phosphoric acid.J. Chem. Phys. 88, 4312–4319 (1988).CrossRefGoogle Scholar
  2. Alexander, J. C., and Cai, D. Y.: On the dynamics of bursting systems.J. Math. Biol. 29, 405–423 (1991).MathSciNetCrossRefGoogle Scholar
  3. Argoul, F., Arneodo, A., and Richetti, P.: Symbolic dynamics in the Belousov-Zhabotinskii reaction: An experimental and theoretical approach of Shil'nikov homoclinic chaos. In Gray, P., Nicolis, G., Baras, F., Borckmans, P. and Scott, S. K. (eds.),Spatial inhomogeneities and transient behaviour in chemical kinetics, pp. 57–66. New York: Manchester University Press, 1990.Google Scholar
  4. Coffman, K. G., McCormick, W. D., Noszticzius, Z., Simoyi, R. H., and Swinney, H. L.: Universality, multiplicity and the effect of iron impurities in the Belousov-Zhabotinskii reaction.J. Chem. Phys. 86, 119–129 (1987).CrossRefGoogle Scholar
  5. Decroly, O., and Goldbeter, A.: Selection between multiple periodic regimes in a biochemical system: Complex dynamic behaviour resolved by use of one dimensional maps.J. Theoret. Biol. 113, 649–671 (1985).MathSciNetGoogle Scholar
  6. Decroly, O., and Goldbeter, A.: From simple to complex oscillatory behaviour: analysis of bursting in a multiply regulated biochemical system.J. Theoret. Biol. 124, 219–250 (1987).MathSciNetGoogle Scholar
  7. Derrida, B., Gervois, A., and Pomeau, Y.: Iteration of endomorphisms on the real axis and representation of numbers.Ann. Inst. H. Poincaré 29, 305–356 (1978).MathSciNetGoogle Scholar
  8. Feigenbaum, M. J.: Universal behavior in nonlinear systems.Phys. D 7, 16–39 (1983).MathSciNetCrossRefGoogle Scholar
  9. Gaspard, P., and Nicolis, G.: What can we learn from homoclinic orbits in chaotic dynamics?J. Stat. Phys. 31, 499–518 (1983).MathSciNetCrossRefGoogle Scholar
  10. Gaspard, P., and Wang, X. J.: Homoclinic orbits and mixed-mode oscillations in far-from-equilibrium systems.J. Stat. Phys. 48, 151–199 (1987).MathSciNetCrossRefGoogle Scholar
  11. Gavrilov, N. K., and Shil'nikov, L. P.: On three dimensional dynamical systems close to systems with a structurally unstable homoclinic curve. I.Math. USSR-Sb. 17, 467–485 (1972).CrossRefGoogle Scholar
  12. Gavrilov, N. K., and Shil'nikov, L. P.: On three dimensional dynamical systems close to systems with a structurally unstable homoclinic curve. II.Math. USSR-Sb. 19, 139–156 (1973).CrossRefGoogle Scholar
  13. Glarum, S. H., and Marshall J. H.: The anodic dissolution of copper into phosphoric acid. I. Voltammetric and oscillatory behavior.J. Electrochem. Soc. 132, 2872–2878 (1985).Google Scholar
  14. Glendinning, P., and Sparrow, C.: Local and global behavior near homoclinic orbits.J. Stat. Phys. 35, 645–696, (1984).MathSciNetCrossRefGoogle Scholar
  15. Hindmarsh, A. C.: LSODE and LSODI, two new initial value ordinary differential equation solvers.ACM-signum Newsletter 15, 10–11 (1980).Google Scholar
  16. Larson, M. A., and Garside, J.: Solute clustering and interfacial tension.J. Cryst. Growth 76, 88–92 (1986).CrossRefGoogle Scholar
  17. Larter, R., Bush, C. L., Lonis, T. R., and Aguda, B. D.: Multiple steady states, complex oscillations, and the devil's staircase in the peroxidase-oxidase reaction.J. Chem. Phys. 87, 5765–5771 (1987).CrossRefGoogle Scholar
  18. Lozi, R.: A mathematical model of sequence of pattern bifurcations in the Belousov-Zhabotinsky reaction.C. R. Acad. Sci. Paris, Ser. I 294, 21–26 (1982).MATHMathSciNetGoogle Scholar
  19. Mackay, R. S., and Tresser, C.: Some flesh on the skeleton: The bifurcation structure of bimodal maps.Phys. D 27, 412–422 (1987).MathSciNetCrossRefGoogle Scholar
  20. Maselko, J., and Swinney, H.L.: Complex periodic oscillations and Farey arithmetic in the Belousov-Zhabotinskii reaction.J. Chem. Phys. 85, 6430–6441 (1986).MathSciNetCrossRefGoogle Scholar
  21. Metropolis, N., Stein, M. L., and Stein, P. R.: On finite limit sets for transformations on the unit interval.J. Combin. Theor. A 15, 25–44 (1973).MathSciNetCrossRefGoogle Scholar
  22. Mori, S., and Di Cera, E.: Birhythmicity and a route to turbulence through limit cycle fusion in a simple autocatalytic system.Phys. Lett. A 143, 369–372 (1990).MathSciNetCrossRefGoogle Scholar
  23. Mundy, G. R.:Calcium homeostasis: Hypercalcemia and hypocalcemia. London: Martin Dunitz, 1990.Google Scholar
  24. Parida, G. R., and Schell, M.: Coexisting cyclic voltammograms.J. Phys. Chem. 95, 2356–2361 (1991).CrossRefGoogle Scholar
  25. Peng, B., Scott, S. K., and Showalter, K.: Period-doubling and chaos in a three-variable autocatalator.J. Phys. Chem. 94, 5243–5246 (1990).CrossRefGoogle Scholar
  26. Perault-Staub, A. M., Staub, J. F., and Milhaud, G.: Extracellular calcium homeostasis. In Heersche, J. N. M., and Kanis, J. A. (eds.),Bone and mineral research, vol. 7, pp. 1–102. New York: Elsevier, 1990.Google Scholar
  27. Richetti, P., Roux, J. C., Argoul, F., and Arneodo, A.: From quasiperiodicity to chaos in the Belousov-Zhabotinskii reaction. II. Modeling and theory.J. Chem. Phys. 86, 3339–3356 (1987).MathSciNetCrossRefGoogle Scholar
  28. Ringland, J., and Schell, M.: The Farey tree embodied in bimodal maps of the interval.Phys. Lett. A 136, 379–386 (1989).MathSciNetCrossRefGoogle Scholar
  29. Ringland, J., Issa, N., and Schell, M.: From U sequence to Farey sequence: A unification of one-parameter scenarios.Phys. Rev. A 41, 4223–4235 (1990).MathSciNetCrossRefGoogle Scholar
  30. Ringland, J., and Schell, M.: Genealogy and bifurcation skeleton for cycles of the iterated two-extremum map of the interval.SIAM J. Math. Anal. 22, 1354–1371 (1991).MathSciNetCrossRefGoogle Scholar
  31. Rinzel, J., and Troy, W. C.: A one-variable map analysis of bursting in the Belousov-Zhabotinskii reaction.Contemp. Math. 17, 411–427 (1983).MathSciNetGoogle Scholar
  32. Rössler, O. E.: Chaos in abstract kinetics: Two prototypes.Bull. Math. Biol. 39, 275–289 (1977).MATHCrossRefGoogle Scholar
  33. Schell, M., and Albahadily, F. N.: Mixed-mode oscillations in an electrochemical system. II. A periodic-chaotic sequence.J. Chem. Phys. 90, 822–828 (1989).MathSciNetCrossRefGoogle Scholar
  34. Schlögl, F.: On thermodynamics near a steady state.Z. Phys. 248, 446–458 (1971).CrossRefGoogle Scholar
  35. Schlögl, F.: Chemical reaction models for non-equilibrium phase transitions.Z. Phys. 253, 147–161 (1972).CrossRefGoogle Scholar
  36. Scott, S. K., and Tomlin, A. S.: Period doubling and other complex bifurcations in nonisothermal chemical systems.Phil. Trans. A 332, 51–68 (1990).Google Scholar
  37. Sel'kov, E. E.: Self-oscillations in glycolysis.Eur. J. Biochem. 4, 79–86 (1968).CrossRefGoogle Scholar
  38. Söhnel, O., and Garside, J.: Solute clustering and nucleation.J. Cryst. Growth 89, 202–208 (1988).CrossRefGoogle Scholar
  39. Staub, J. F., Perault-Staub, A. M., and Milhaud, G.: Endogenous nature of circadian rhythms in calcium metabolism.Am. J. Physiol. 237, R311-R317 (1979).Google Scholar
  40. Staub, J. F., Tracqui, P., Brezillon, P., Milhaud, G., and Perault-Staub, A. M.: Calcium metabolism in the rat: A temporal self-organized model.Am. J. Physiol. 254, R134-R139 (1988).Google Scholar
  41. Staub, J. F., Tracqui, P., Lausson, S., Milhaud, G., and Perault-Staub, A. M.: A physiological view of in vivo calcium dynamics: The regulation of a nonlinear self-organized system.Bone 10, 77–86 (1989).CrossRefGoogle Scholar
  42. Steinmetz, C. G., and Larter, R.: The quasiperiodic route to chaos in a model of the peroxidase-oxidase reaction.J. Chem. Phys. 94, 1388–1396 (1991).MathSciNetCrossRefGoogle Scholar
  43. Terman, D.: The transition from bursting to continuous spiking in excitable membrane models.J. Nonlin. Sci. 2, 135–182 (1992).MATHMathSciNetGoogle Scholar
  44. Tracqui, P., Perault-Staub, A. M., Milhaud, G., and Staub, J. F.: Theoretical study of a two dimensional autocatalytic model for calcium dynamics at the extracellular fluid-bone interface.Bull. Math. Biol. 49, 597–613 (1987).MathSciNetCrossRefGoogle Scholar
  45. Tracqui, P., Staub, J. F., and Perault-Staub, A. M.: Analysis of degenerate Hopf bifurcations for a nonlinear model of rat metabolism.Nonlin. Anal.: Theor. Methods Appl. 13, 429–457 (1989).MathSciNetCrossRefGoogle Scholar
  46. Tracqui, P., Staub, J. F., and Perault-Staub, A. M.: Modelling of in vivo calcium metabolism. II. Minimal structure or maximum dynamic diversity: The interplay of biological constraints.Acta Biotheor. 40, 103–111 (1992).CrossRefGoogle Scholar
  47. Tracqui, P.: Homoclinic tangencies in an autocatalytic model of interfacial processes at the bone surface,Physica D 62, 275–289 (1993).MATHCrossRefGoogle Scholar
  48. Tyson, J., and Kauffman, S.: Control of mitosis by a continuous biochemical oscillation: synchronization; spatially inhomogeneous oscillations.J. Math. Biol. 1 289–310 (1975).Google Scholar
  49. Tyson, J. J.: Modeling the cell division cycle: cdc2 and cyclin interactions.Proc. Natl. Acad. Sci. USA 88, 7328–7332 (1991).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York Inc 1994

Authors and Affiliations

  • P. Tracqui
    • 1
    • 2
  1. 1.C.N.R.S. URA 163, Service de Biophysique, C.H.U. St. AntoineParis, Cedex 12France
  2. 2.Department of Applied Mathematics FS-20University of WashingtonSeattleUSA

Personalised recommendations