Neurochemical Research

, Volume 10, Issue 11, pp 1525–1532 | Cite as

Action of brain cathepsin B, cathepsin D, and high-molecular-weight aspartic proteinase on angiotensins I and II

  • Anahit Azaryan
  • Nina Barkhudaryan
  • Armen Galoyan
  • Abel Lajtha
Original Articles


The action of three previously isolated electrophoretically homogeneous brain proteinases—cathepsin B (EC, cathepsin D (EC, and high-molecular-weight aspartic proteinase (Mr=90K; EC 3.4.23.−)—on human angiotensins I and II has been investigated. The products of enzymatic hydrolysis have been identified by thin-layer chromatography on Silufol plates using authentic standards and by N-terminal amino acid residue analysis using a dansyl chloride method. Cathepsin D and high-molecular-weight aspartic proteinase did not split angiotensin I or angiotensin II. Cathepsin B hydrolyzed angiotensin I via a dipeptidyl carboxypeptidase mechanism removing His-Leu to form angiotensin II, and it degraded angiotensin II as an endopeptidase at the Val3-Tyr4 bond. Cathepsin B did not split off His-Leu from Z-Phe-His-Leu. Brain cathepsin B may have a role in the generation and degradation of angiotensin II in physiological conditions.


Angiotensin Enzymatic Hydrolysis Endopeptidase Homogeneous Brain Authentic Standard 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Azaryan, A. V., Akopyan, T. N., andBuniatyan, H. Ch. 1983. Cathepsin D from human brain. Purification and multiple forms. Biomed. Biochim. Acta 42:1237–1246.PubMedGoogle Scholar
  2. 2.
    Barkhudaryan, N. A., andAzaryan, A. V. 1983. Visokomolekulyarnaja aspartilnaja proteinaza iz golovnogo mozga bika. Nejrokhimija 2:280–287.Google Scholar
  3. 3.
    Galoyan, A. A., Azaryan, A. V., andBarkhudaryan, N. A. 1984. About three proteinases from brain tissue. Pages 229–236.inE. S. Vizi andK. Magyar (eds.), Regulation of transmitter function, Proc. 5th Meeting of ESN, Akademiai Kiado, Budapest.Google Scholar
  4. 4.
    Azaryan, A. V., Kirschke, H., Barkhudaryan, N. A., andGaloyan, A. A. 1984. Some properties of human and bovine brain cathepsin B. Pages 14–15,inE. S. Vizi andK. Magyar (eds.), Regulation of transmitter function, Proc. 5th Meeting of ESN, Akademiai Kiado, Budapest.Google Scholar
  5. 5.
    Azaryan, A. V., Wiederanders, B., Barkhudaryan, N. A., andGaloyan, A. A. 1984. New characteristics of high-molecular-weight aspartic proteinase from bovine brain. Page 11,inKostka, V. (ed.), Aspartic proteinases and their inhibitors, Proc. FEBS course, Praha.Google Scholar
  6. 6.
    Azaryan, A. V., Barkhudaryan, N. A., andGaloyan, A. A. 1985. Some properties of human and bovine brain cathepsin B. Neurochem. Res. 10:1511–1524.PubMedCrossRefGoogle Scholar
  7. 7.
    Gros, C., andLabouesse, B. 1969. Study of the dansylation reaction of amino acids, peptides and proteins. Eur. J. Biochem. 7:463–470.PubMedCrossRefGoogle Scholar
  8. 8.
    Hartley, B. S. 1970. Strategy and tactics in protein chemistry. Biochem. J. 119:805–822.PubMedGoogle Scholar
  9. 9.
    Piquilloud, J., Reinharz, A., andRoth, M. 1970. Studies on the angiotensin converting enzyme with different substrates. Biochim. Biophys. Acta 206:136–142.PubMedGoogle Scholar
  10. 10.
    Barrett, A. J., andKirschke, H. 1981. Cathepsin B, cathepsin H and cathepsin L. Methods Enzymol. 80C:535–561.PubMedCrossRefGoogle Scholar
  11. 11.
    McDonald, J. K., andEllis, S. 1975. On the substrate specificity of cathepsin Bl and B2 including a new fluorogenic substrate for cathepsin B1. Life Sci. 17:1269–1276.PubMedCrossRefGoogle Scholar
  12. 12.
    Aronson, N. N., Jr., andBarrett, A. J. 1978. The specificity of cathepsin B. Hydrolysis of glucagon at the C-terminus by a peptidyldipeptidase mechanism. Biochem. J. 171:759–765.PubMedGoogle Scholar
  13. 13.
    Nakai, N., Wada, K., Kobashi, K., andHase, J. 1978. The limited proteolysis of rabbit muscle adolase by cathepsin B1. Biochem. Biophys. Res. Commun. 83:881–885.PubMedCrossRefGoogle Scholar
  14. 14.
    Bond, J., andBarrett, A. J. 1980. Degradation of fructose-1,6-biphosphate aldolase by cathepsin B. Biochem. J. 189:17–25.PubMedGoogle Scholar
  15. 15.
    Guinn, P. S., andJudah, J. D. 1978. Calcium-dependent Golgi vesicle fusion and cathepsin B in the conversion of proalbumin into albumin in rat liver. Biochem. J. 173:301–309.Google Scholar
  16. 16.
    Lazure, C., Seidah, N. G., Pelaprat, D., andChretien, M. 1983. Proteases and posttranslational processing of prohormones: a review. Can. J. Biochem. Cell. Biol. 61:501–515.PubMedCrossRefGoogle Scholar
  17. 17.
    Burbach, P. H. 1984. Action of proteolytic enzymes on lipotropins and endorphins: biosynthesis, biotransformation and fate. Pharmacol. Ther. 24:321–354.PubMedCrossRefGoogle Scholar
  18. 18.
    Takahashi, T., Schmidt, P. G., andTang, J. 1984. Novel carbohydrate structures of cathepsin B from porcine spleen. J. Biol. Chem. 259:6059–6062.PubMedGoogle Scholar
  19. 19.
    Ganten, D., Lang, R. E., Lehmann, E., andUnger, T. 1984. Brain angiotensins: on the way to becoming a well studied neuropeptide system. Biochem. Pharmacol. 33:3523–3528.PubMedCrossRefGoogle Scholar
  20. 20.
    Brownfield, M. S., Reid, I. M., Ganten, D., andGanong, W. F. 1982. Differential distribution of immunoreactive angiotensin and angiotensin-converting enzyme in rat brain. Neurosci. 7:1759–1769.CrossRefGoogle Scholar
  21. 21.
    Petersen, E. P., Camara, C. G., Abhold, R. H., Wright, J. W., andHarding, J. W. 1984. Characterization of angiotensin binding to gerbil brain membranes using [125I]angiotensin III as the radioligand. Brain Res. 321:225–235.PubMedCrossRefGoogle Scholar
  22. 22.
    Eliseeva, Yu. E., Orekhovich, V. N., Pavlikhina, L. V., andAlexeenko, L. P. 1971. Carboxycathepsin—a key regulatory component of two physiological systems involved in regulation of blood pressure. Clin. Chim. Acta 31:413–419.CrossRefGoogle Scholar
  23. 23.
    Eliseeva, Yu. E., andOrekhovich, V. N. 1963. Videlenije i izuchenije spetsifichnosti karboksikatepsina. Doklady Akademiji nauk SSSR 153:954–956.Google Scholar
  24. 24.
    Yang, N. Y. T., Erdos, E. G., andLevin, J. A. 1970. Dipeptidyl carboxypeptidase that converts angiotensin I and inactivates bradykinin. Biochim. Biophys. Acta 214:374–376.PubMedGoogle Scholar
  25. 25.
    Klickstein, L. B., Kaemfer, C. E., andWintroub, B. U. 1982. The granulocyteangiotensin system. Angiotensin I-converting activity of cathepsin G. J. Biol. Chem. 257:15042–15046.PubMedGoogle Scholar
  26. 26.
    Boucher, R., Asselin, J., andGenest, J. 1972. Pages 512–523,inGenest, J. andKoiw, E. (eds.) Hypertension, Springer-Verlag, New York.Google Scholar
  27. 27.
    Almenoff, J., andOrlowski, M. 1983. Membrane-bound kidney neutral metalloen-dopeptidase. Interaction with synthetic substrates, natural peptides and inhibitors. Biochem. 22:590–599.CrossRefGoogle Scholar
  28. 28.
    Gafford, J. T., Skidgel, R. A., Erdos, E. G., andHersh, L. B. 1983. Human kidney “enkephalinase”, a neutral metalloendopeptidase that cleaves peptides. Biochem. 22:3265–3271.CrossRefGoogle Scholar
  29. 29.
    McKay, M. J., Offerman, M. K., Barrett, A. J., Bond, J. 1983. Action of human liver cathepsin B on the oxidized insulin B-chain. Biochem. J. 213:467–471.PubMedGoogle Scholar
  30. 30.
    Day, R. P., Reid, I. A. 1976. Renin activity in dog brain: enzymological similarity to cathepsin D. Endocrinology 99:93–100.PubMedGoogle Scholar
  31. 31.
    Hackenthal, A., Hackenthal, R., Hilgenfeldt, U. 1978. Purification and partial characterization of rat brain acid proteinase (isorenin). Biochim. Biophys. Acta 522:561–573.PubMedGoogle Scholar
  32. 32.
    Hackenthal, A., Hackenthal, R., Hilgenfeldt, U. 1978. Isorenin, pseudorenin, cathepsin D and renin. A comparative study of angiotensin-forming enzymes. Biochim. Biophys. Acta 522:574–588.PubMedGoogle Scholar
  33. 33.
    Smebby, R. R., Osman, M. Y., Sen, S., Bumpus, F. M. 1981. Relationship of renin and other proteolytis enzymes in dog brain. Pages 223–228,inVillareal, H. (ed.), Hypertension, Wiley and Sons, New York.Google Scholar
  34. 34.
    Morris, B. J., Reid, I. A. 1978. A “renin-like” enzymatic action of cathepsin D and the similarity in subcellular distribution of “renin-like” activity and cathepsin D in the midbrain of dogs. Endocrinology 103:1289–1296.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1985

Authors and Affiliations

  • Anahit Azaryan
    • 1
  • Nina Barkhudaryan
    • 1
  • Armen Galoyan
    • 1
  • Abel Lajtha
    • 2
  1. 1.Institute of BiochemistryYervanUSSR
  2. 2.Center for Neurochemistry Ward's IslandNew York

Personalised recommendations