Skip to main content
Log in

Regulation of multiple forms of cyclic nucleotide phosphodiesterase from bovine hypothalamus: New factors modulating enzyme activity

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Studies of bovine hypothalamic cyclic nucleotide phosphodiesterase (PDE) indicate the presence of several peaks of PDE activity, distinguishable by DEAE-cellulose column chromatography, displaying different substrate specificities, kinetic behavior, and regulatory properties. Evidence is presented that chromatographically separated forms of PDE activity are subject to control by Ca2+-calmodulin, cyclic nucleotides, limited proteolysis, reagents affecting sulfhydryl groups, and neurohormone “C”—one of several new cardioactive compounds isolated from hypothalamic magnocellular nuclei of animals—in a complex substrate-specific and concentration-dependent manner. Of particular interest is the finding that each of the forms of cGMP PDE, being Ca2+/calmodulin-dependent, possesses sensitivity to activation by cAMP, especially under conditions favoring the oxidation of thiol groups of PDE, resulting in a loss in responsiveness of the enzyme to the activation by calmodulin. This effect appears to be relatively stable but readily reversible by sulfhydryl reducing reagents, which restore both the cGMP PDE sensitivity to competitive inhibition by cAMP and the responsiveness of the enzyme to activation by calmodulin. A reinterpretation of the regulatory properties of multiple forms of PDE is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Strada, S. J., andThompson, W. J. 1978. Multiple forms of cyclic nucleotide phosphodiesterases: Anomalies or biologic regulators. Pages 265–283,in Greengard, P., andRobinson, G. (eds.), Adv. in Cyclic Nucleotide Res. 9, Raven Press, New York.

    Google Scholar 

  2. Galoyan, A. A. 1965. Some Problems of the Biochemistry of Hypothalamic Regulation, Haiastan, Yerevan, U.S.S.R.

    Google Scholar 

  3. Galoyan, A. A., Gurvitz, B. Ya., Saribekyan, G. A., andKirakosova, A. S. 1979. Neurohormone “C” and cyclic nucleotides. Pages 165–181,in Cehovic, G., andRobison, G. (eds.), Cyclic Nucleotides and Therapeutic Perspectives, Pergamon Press, New York.

    Google Scholar 

  4. Lowry, O. H., Rosebrough, N. J., Farr, A. L., andRandall, R. L. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265–275.

    PubMed  CAS  Google Scholar 

  5. Kakiuchi, S., Yamazaki, R., andNakajima, H. 1970. Cyclic 3′,5′-nucleotide phosphodiesterase activating factor isolated from brain extract. Proc. Jap. Acad. 46:587–592.

    CAS  Google Scholar 

  6. Cheung, W. Y. 1970. Cyclic 3′,5′-nucleotide phosphodiesterase. Demonstration of an activator. Biochem. Biophys. Res. Commun. 38:533–538.

    Article  PubMed  CAS  Google Scholar 

  7. Galoyan, A. A., Gurvitz, B. Ya., andSharova, N. P. 1985. The role of thiol groups in cyclic nucleotide phosphodiesterase activation by calmodulin. Neurokhimia, U.S.S.R. 45:56–60.

    Google Scholar 

  8. Galoyan, A. A., Srapionian, R. M. 1983. Protein hormonal complexes of the hypothalamus as neurochemical systems of regulation. Neurochem. Res. 8:1511–1535.

    Article  PubMed  CAS  Google Scholar 

  9. Galoyan, A. A., Gurvitz, B. Ya., andKirakosova, A. S. 1978. Neurohormone “C” and cyclic nucleotides. Page 776,in Greengard, P., andRobison, G. (eds.), Adv. in Cyclic Nucleotide Res. 9, Raven Press, New York.

    Google Scholar 

  10. Galoyan, A. A., andGurvitz, B. Ya. 1982. Regulation of cyclic nucleotide phosphodiesterase activity: New endogenous regulators. Vestnik Acad. Med. Nauk, U.S.S.R. 9:64–69.

    Google Scholar 

  11. Goldberg, N. D., O'Dea, R. F., andHaddox, M. K. 1973. Cyclic GMP. Pages 155–223,in Drummond, G., Greengard, P., andRobison, G. (eds.), Adv. in Cyclic Nucleotide Res. 3, Raven Press, New York.

    Google Scholar 

  12. Ferrendelly, J. A. 1978. Distribution and regulation of cyclic GMP in central nervous system. Pages 453–464,in Drummond, G., Greengard, P., andRobison, G. (eds.), Adv. in Cyclic Nucleotide Res. 9 Raven Press, New York.

    Google Scholar 

  13. Gurvitz, B. Ya., andGaloyan, A. A. 1984. Regulation of multiple forms of cyclic nucleotide phosphodiesterase from hypothalamus. 16th Meeting of FEBS. XXII-50, 448.

  14. Ho, H. C., Wirch, E., Stevens, F. C., andWang, J. H. 1977. Purification of a Ca2+-activatable cyclic nucleotide phosphodiesterase from bovine heart by specific interaction with its Ca2+-dependent modulator protein. J. Biol. Chem. 252:43–50.

    PubMed  CAS  Google Scholar 

  15. Tucker, M. M., Robinson, J. B. andStellwagen, E. 1981. The effect of proteolysis on the calmodulin activation of cyclic nucleotide phosphodiesterases. J. Biol. Chem. 256:9051–9058.

    PubMed  CAS  Google Scholar 

  16. Cheung, W. Y. 1969. Cyclic AMP phosphodiesterase. Preparation of a partially inactive enzyme and its subsequent stimulation by snake venom. Biochim. Biophys. Acta 191:303–315.

    PubMed  CAS  Google Scholar 

  17. Epstein, R. M., Pledger, W. J., Gardner, E. A., Stancel, G. M., Thompson, W. J., andStrada, S. I. 1978. Activation of mammalian cyclic AMP phosphodiesterase by trypsin. Biochim. Biophys. Acta 527:442–445.

    PubMed  CAS  Google Scholar 

  18. Wolff, D. J., andBrpstrp, C. O. 1976. Calcium-dependent cyclic nucleotide phosphodiesterase from brain. Identification of phospholipids as calcium-independent activators. Arch. Biochem. Biophys. 173:720–731.

    Article  PubMed  CAS  Google Scholar 

  19. Amer, M. S. 1978. Cyclic nucleotides and drug development. Pages 36–75,in Cehovic, G., andRobison, G. (eds.), Cyclic Nucleotides and Therapeutic Perspectives, Pergamon Press, New York.

    Google Scholar 

  20. Wang, J. H., andDesai, R. 1976. A brain protein and its effect on the Ca2+ and protein modulator-activated cyclic nucleotide phosphodiesterase. Biochem. Biophys. Res. Commun. 72:926–932.

    Article  PubMed  CAS  Google Scholar 

  21. Klee, C. B., andKrinks, M. H. 1978. Purification of cyclic 3′,5′-nucleotide phospodiesterase inhibitory protein by affinity chromatography on activator protein coupled to sepharose. Biochemistry 17:120–126.

    Article  PubMed  CAS  Google Scholar 

  22. Kakiuchi, S., Sobue, K., andFujita, M. 1981. Purification of a 240,000 Mr calmodulin binding protein from a microsomal fraction of brain. FEBS. Lett. 132:144–148.

    Article  PubMed  CAS  Google Scholar 

  23. Wallace, R. W., Lynch, T. J., Tallant, E. A., andCheung, W. Y. 1979. Purification and characterization of an inhibitor protein of brain adenylate cyclase and cyclic nucleotide phosphodiesterase. J. Biol. Chem. 254:377–382.

    PubMed  CAS  Google Scholar 

  24. Kanamori, T., Creveling, C. R., andDaly, J. W. 1979. Calcium-dependent cyclic nucleotide phosphodiesterase. Inhibition of basal activity by heat-stable factors from rat cerebrum. Biochim. Biophys. Acta 582:434–447.

    PubMed  CAS  Google Scholar 

  25. Sharma, R. K., Wirch, H., andWang, J. H. 1978. Inhibition of Ca2+-activated cyclic nucleotide phosphodiesterase reaction by a heat-stable inhibitor protein from bovine brain. J. Biol. Chem. 253:3575–3580.

    PubMed  CAS  Google Scholar 

  26. Vernicos-Danellis, J., andHarris, C. G. 1968. The effect of in vitro and in vivo caffein, theophylline and hydrocortisone on the phosphodiesterase activity of the pituitary, median eminence, heart and cerebral cortex of the rat. Proc. Soc. Exp. Biol. Med. 128:1016–1019.

    Google Scholar 

  27. Fredholm, B. B., Fuxe, K., andAgnati, L. 1976. Effects of some phosphodiesterase inhibitors on central dopamine mechanisms. Eur. J. Pharmacol. 38:31–38.

    Article  PubMed  CAS  Google Scholar 

  28. Malencik, D. A., andAnderson, S. R. 1982. Binding of simple peptides, hormones and neurotransmitters by calmodulin. Biochemistry 21:3480–3486.

    Article  PubMed  CAS  Google Scholar 

  29. Galoyan, A. A., andGurvitz, B. Ya. Regulation of calmodulin (CaM)-stimulated phosphodiesterase (PDE) of hypothalamus by neurohormone “C”: Regulatory domain of CaM-dependent PDE. J. Neurochem. 41: S 112C.

  30. Galoyan, A. A., Alexanyan, S. S., Abelyan, J. G., andBarchudaryam, N. A. 1975. Changes in phosphorylase activity in heart and other tissues by neurohormone “C” and somatostatin. DAN Arm. S.S.R. 60:117–120.

    CAS  Google Scholar 

  31. Kebabian, J. W., andGreengard, P. 1971. Dopamine-sensitive adenyl cyclase. Possible role in synaptic transmission. Science 174:1346–1349.

    PubMed  CAS  Google Scholar 

  32. Palmer, G. C., Sulser, F., andRobison, G. A. 1973. Effects of neurohormonal and adrenergic agents on cyclic AMP levels in various areas of the rat brain in vitro. Neuropharmacology 12:327–337.

    Article  PubMed  CAS  Google Scholar 

  33. Krueger, B. K., Forn, J., andGreengard, P. 1975. Dopamine-sensitive adenylate cyclase and protein phosphorylation in the rat caudate nucleus. Pages 123–147,in Usdin, E., andBunney, W. E. (eds.), Pre- and Post-synaptic Receptors, Marcel Decker Inc., New York.

    Google Scholar 

  34. Gnedy, M. E., Uzunov, P., andCosta, E. 1976. Regulation of dopamine stimulation of striatal adenylate cyclase by an andogenous Ca2+-binding protein. Proc. Nat. Acad. Sci. USA 73:3387–3390.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Special Issue dedicated to Dr. Eugene Kreps.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Galoyan, A.A., Gurvitz, B.Y. Regulation of multiple forms of cyclic nucleotide phosphodiesterase from bovine hypothalamus: New factors modulating enzyme activity. Neurochem Res 10, 1467–1481 (1985). https://doi.org/10.1007/BF02430598

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02430598

Keywords

Navigation