Skip to main content
Log in

Resistivity relaxation, a new approach to study ionic mobility in perovskite mixed conductors like CaTi0.7Fe0.3O3–δ

  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Oxygen transport of mixed ionic-electronic conductors can be measured by a ‘relaxation’ technique that permits to investigate the material dynamic properties with oxygen partial pressure change. However, for materials exhibiting higher electronic conductivity than ionic, the time for conductivity change is controlled by bulk ionic transport and any surface reaction can be neglected. By fitting the experimental relaxation data of CaTi0.7Fe0.3O3–δ composition, the oxidation and reduction kinetics was found to be independent on oxygen partial pressure (\(P_{O_2 } \)) and the rate constants were derived therefrom. From a relaxation experiment at a single\(P_{O_2 } \) we therefore obtain both the electronic and ionic contributions to the total conductivity as well as the chemical diffusion coefficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang Shizhong, Yi Jiang, Zhang Yahong, Li Wenzhao, Yan Jingwang, Lu Zigui, Solid State Ionics120, n.1–4, 75 (1999).

    Google Scholar 

  2. K.R. Kendall, C. Navas, J.K. Thomas, H.-C. Zur Loye, Solid State Ionics82, 215 (1995).

    Article  CAS  Google Scholar 

  3. B. Ma, U. Balachandran, J.-H. Park, C.U. Serge, Solid State Ionics83, 65 (1996).

    Article  CAS  Google Scholar 

  4. P.E. Childs, L.W. Laub, J.B. Wagner Jr., Prog. Br. Ceram. Soc.19, 29 (1971).

    Google Scholar 

  5. F. Morin, R. Dieckmann, Z. Phys. Chem. NF.129, 129 (1982).

    Google Scholar 

  6. A. Nakamura, H. Schmalzried, Phys. Chem. Minerals10, 27 (1983).

    Article  CAS  Google Scholar 

  7. J. Crank, in: The Mathematics of Diffusion, 2nd Ed., Oxford University Press, New York, 1975.

    Google Scholar 

  8. C. McCammon, A.I. Becerro, F. Langenhorst, R.J. Angel, S. Marion, F. Seifert, J. of Physics Cond. Mat.12, No. 13, 2969 (2000).

    Article  CAS  Google Scholar 

  9. A.I. Becerro, F. Langenhorst, R.J. Angel, S. Marion, C.A. McCammon, F. Seifert, Physical Chemistry Chemical Physics2, 3933 (2000).

    Article  CAS  Google Scholar 

  10. A.I. Becerro, F. Seifert, R.J. Angel, S. Rios, C. McCammon, J. of Physics Cond. Mat.12, No. 15, 3661 (2000).

    Article  CAS  Google Scholar 

  11. H. Rickert, in: Electrochemistry of Solids, an Introduction, Springer Verlag, Berlin, 1982.

    Google Scholar 

  12. S. Marion, A.I. Becerro, T. Norby, Ionics5& 6, 385 (1999).

    Article  Google Scholar 

  13. S. Steinsvik, T. Norby, P. Kofstad, Electroceramics 4. Verlag der Augustinus Buchhandlung 2, 691, (1994).

  14. S. Steinsvik, R. Bugge, J. Gjønnes, J. Taftø, T. Norby, Journal of Physics and Chemistry of Solids58, Issue 6, 969 (1997).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mashkina, E., Baier, M., Magerl, A. et al. Resistivity relaxation, a new approach to study ionic mobility in perovskite mixed conductors like CaTi0.7Fe0.3O3–δ . Ionics 11, 269–274 (2005). https://doi.org/10.1007/BF02430388

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02430388

Keywords

Navigation