, Volume 11, Issue 3–4, pp 226–235 | Cite as

Local structure of manganese oxides and lithium intercalates

  • C. M. Julien
  • M. Massot


The aim of this work is to determine the vibrational properties of manganese oxide frameworks and their lithium intercalates used as positive electrode material in Li-ion batteries. Raman and FTIR spectroscopies yield reliable description of material structure in which distortion of the basal MnO6 octahedra may be expected. Lattice dynamics are studied using either a classical group theoretical analysis or a local environment model. The local arrangement in MnO2 structures is investigated for pyrolusite, ramsdellite and the Li0.33MnO2 phase. The phase evolution as a function of the degree of lithium intercalation or deintercalation is reported and analysed in series of manganospinels Li1–x+δMn2–δO4 with 0≤x≤1 and 0≤δ≤0.33. The trigonal distortion of MnO6 octahedra is evidenced by insertion of lithium ions into the [B2]O4 spinel framework. A comparison with tetragonal Li2Mn2O4 and Li6.5Mn5O12 spinels shows the influence of the Jahn-Teller effect on the Raman features for this class of materials. The local structure was characterized as a function of the mean oxidation state of manganese cations.


MnO2 Manganese Oxide Pyrolusite Lithium Intercalation Reliable Description 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    C. Julien, NATO Sci. Series2–61, 235 (2002).Google Scholar
  2. [2]
    Q. Feng, H. Kanoh and K. Ooi, J. Mater. Chem.9, 319 (1999).CrossRefGoogle Scholar
  3. [3]
    T. Ohzuku, M. Kitagawa and T. Hirai, J. Electrochem. Soc.137, 769 (1990).Google Scholar
  4. [4]
    M.M. Thackeray, W.I.F. David, P.G. Bruce and J.B. Goodenough, Mater. Res. Bull.18, 461 (1983).CrossRefGoogle Scholar
  5. [5]
    M.M. Thackeray, Prog. Solid State Chem.25, 1 (1997).CrossRefGoogle Scholar
  6. [6]
    R.J. Gummow, A. DeKock and M.M. Thackeray, Solid State Ionics69, 59 (1994).CrossRefGoogle Scholar
  7. [7]
    G. Pistoia, A. Antonini, R. Rosati and C. Bellitto, J. Electroanal. Chem.410, 115 (1996).CrossRefGoogle Scholar
  8. [8]
    N. Hayashi, H. Ikuta and M. Wakihara, J. Electrochem. Soc.146, 1351 (1999).CrossRefGoogle Scholar
  9. [9]
    C. Julien, S. Ziolkiewicz, M. Lemal and M. Massot, J. Mater. Chem.11, 1837 (2001).CrossRefGoogle Scholar
  10. [10]
    C. Julien, A. Rougier, E. Haro-Poniatowski and G.A. Nazri, Mol. Cryst. Liq. Cryst.311, 81 (1998).Google Scholar
  11. [11]
    B. Ammundsen, G.R. Burns, M.S. Islam, H. Kanoh and J. Rozière, J. Phys. Chem. B103, 5175 (1999).CrossRefGoogle Scholar
  12. [12]
    W. Huang and R. Frech, J. Power Sources81–82, 616 (1999).CrossRefGoogle Scholar
  13. [13]
    C. Julien and M. Massot, Phys. Chem. Chem. Phys.4, 2462 (2002).CrossRefGoogle Scholar
  14. [14]
    M.M. Sinha and H.C. Gupta, Physica B316–317, 166 (2002).CrossRefGoogle Scholar
  15. [15]
    C. Julien, C. Letranchant, M. Lemal, S. Ziokiewicz and S. Castro-Garcia, J. Mater. Sci.37, 2367 (2002).CrossRefGoogle Scholar
  16. [16]
    C. Julien, M. Massot, S. Rangan, M. Lemal and D. Guyomard, J. Raman Spectrosc.33, 223 (2002).CrossRefGoogle Scholar
  17. [17]
    C. Julien and M. Massot, Phys. Chem. Chem. Phys.4, 4226 (2002).CrossRefGoogle Scholar
  18. [18]
    C. Julien, Solid State Ionics136–137, 887 (2000).CrossRefGoogle Scholar
  19. [19]
    C. Julien, Ionics6, 30 (2000).CrossRefGoogle Scholar
  20. [20]
    E. Levi, E. Zinigrad, H. Teller, M.D. Levi and D. Aurbach, J. Electrochem. Soc.145, 3440 (1998).Google Scholar
  21. [21]
    S.H. Kang, J.B. Goodenough, L.K. Rabenberg, Chem. Mater.13, 1758 (2001).CrossRefGoogle Scholar
  22. [22]
    C. Wu, Z. Wang, F. Wu, L. Chen and X. Huang, Solid State Ionics144, 277 (2001).CrossRefGoogle Scholar
  23. [23]
    W.I.F. David, M.M. Thackeray, L.A. DePicciotto and J.B. Goodenough, J. Solid State Chem.67, 316 (1987).CrossRefGoogle Scholar
  24. [24]
    P. Tarte, J. Inorg. Nucl. Chem.29, 915 (1967).CrossRefGoogle Scholar
  25. [25]
    J. Preudhomme and P. Tarte, Spectrochim. Acta27A, 845 (1971).Google Scholar
  26. [26]
    H.D. Lutz, W. Becker, B. Muller and M. Jung, J. Raman Spectrosc.20, 99 (1989).CrossRefGoogle Scholar

Copyright information

© IfI - Institute for Ionics 2005

Authors and Affiliations

  • C. M. Julien
    • 1
  • M. Massot
    • 2
  1. 1.Institut des Nano-Sciences de Paris (INSP), UMR 7588Université Pierre et Marie CurieParisFrance
  2. 2.Institut de Minéralogie et Physique de la Matière CondenséeUniversité Pierre et Marie CurieParisFrance

Personalised recommendations