Skip to main content
Log in

Three-dimensional numerical study of cell broadening during cold-air outbreaks

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

The boundary-layer development and convection-pattern transition typically occurring in cold-air outbreaks is studied using three-dimensional simulations. The simulations include the secondary-flow transition starting with the relatively small-scale boundary-layer rolls developing during the initial phase and ending with mesoscale cellular convection patterns. The application of a computational grid, whose horizontal mesh size enables the resolution of the small-scale initial patterns and whose domain size is large enough to capture mesoscale convection patterns, overcharges even state-of-the-art supercomputers. In order to bypass the computer storage problem, the horizontal size of the model domain and the horizontal resolution of the computational grid are adjusted to the scale of the dominant convective structures. This enables the simulation of convection cells whose horizontal scales increase up to values exceeding the size of the initial model domain.

The model is applied to conditions of a cold-air outbreak observed during the ARKTIS 1991 experiment. The most important characteristics of the observed situation are revealed by the model. Sensitivity studies are performed in order to investigate the relation between cell broadening and various physical processes. The artificial cutoff of liquid-water formation prevents the enlargement of convective scales. Latent heating due to condensation and especially radiative cloud-top cooling are identified as processes leading to cell broadening. We propose a conceptual model that elucidates the mechanism by which cloud-top cooling may generate larger aspect ratios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agee, E. M., Chen, T. S. and Dowell, K. E.: 1973, ‘A Review of Mesoscale Cellular Convection’,Bull. Amer. Meteorol. Soc. 54, 1004–1012.

    Article  Google Scholar 

  • Agee, E. M.: 1984, ‘Observations from Space and Thermal Convection: A Historical Perspective’,Bull. Amer. Meteorol Soc. 65, 938–949.

    Article  Google Scholar 

  • Bénard, H.: 1901, ‘Les Tourbillions Cellulaires dans une Nappe Liquide Transportant de la Chaleur par Convection en Regime Permanent’,Ann. Chim. Phys. 23, 62–144.

    Google Scholar 

  • Brown, R. A.: 1980, ‘Longitudinal Instabilities and Secondary Flows in the Planetary Boundary Layer: A Review’,Rev. Geophys. Space Phys. 18, 683–697.

    Google Scholar 

  • Brugge, R. and Moncrieff, M. W.: 1985, ‘The Effect of Physical Processes on Numerical Simulations of Two-Dimensional Cellular Convection’,Contr. Atmos. Phys. 58, 417–440.

    Google Scholar 

  • Brümmer, B. (ed.): 1992, ‘ARKTIS 1991 — Report on the Field Phase with Examples of Measurements’,Berichte aus dem Zentrum für Meeres- u. Klimaforschung, Reihe A, 3, 216 Seiten.

  • Chlond, A.: 1988, ‘Numerical and Analytical Studies of Diabatic Heating Effect Upon Flatness of Boundary Layer Rolls’,Contr. Atmos. Phys. 61, 312–329.

    Google Scholar 

  • Chlond, A.: 1992, ‘Three-Dimensional Simulation of Cloud Street Development During a Cold Air Outbreak’,Boundary-Layer Meteorol. 58, 161–200.

    Article  Google Scholar 

  • Clark, T., Hauf, T. and Küttner, J. P.: 1986, ‘Convectively Forced Internal Gravity Waves: Results from Two-Dimensional Numerical Experiments’,Quart. J. Roy. Meteorol. Soc. 112, 899–925.

    Article  Google Scholar 

  • Deardorff, J. W.: 1980a, ‘Stratocumulus-Capped Mixed Layers Derived from a Three-Dimensional Model’,Boundary-Layer Meteorol. 18, 495–527.

    Article  Google Scholar 

  • Deardorff, J. W.: 1980b, ‘Cloud Top Entrainment Instability’,J. Atmos. Sci. 37, 131–146.

    Article  Google Scholar 

  • Fiedler, B. H. and Peckham, S.: 1992, ‘Numerical Study of Convective Scale Selection in a Cloud-Topped Marine Boundary Layer’,Tellus 44, 366–380.

    Article  Google Scholar 

  • Fiedler, B. H.: 1993, ‘Cell Broadening in Three-Dimensional Thermal Convection Between Poorly Conducting Boundaries’,Beitr. Phys. Atmosph. 66(3), 173–181.

    Google Scholar 

  • Hardy, K. R. and Ottersten, H.: 1969, ‘Radar Investigations of Convective Patterns in the Clear Atmosphere’,J. Atmos. Sci. 26, 666–672.

    Article  Google Scholar 

  • Hsu, W.-R., Sun, W.-Y.: 1991, ‘Numerical Study of Mesoscale Cellular Convection’,Boundary-Layer Meteorol. 57, 167–186.

    Article  Google Scholar 

  • Kessler, E.: 1969, ‘On the Distribution and Continuity of Water Substance in Atmospheric Circulation’, Met. Monograph. 10, 32, American Meteorol. Soc., Boston, pp. 1–84.

    Google Scholar 

  • Küttner, J. P.: 1971, ‘Cloud Bands in the Atmosphere’,Tellus 23, 404–425.

    Article  Google Scholar 

  • Lenschow, D. H. and Agee, E. M.: 1976, ‘Preliminary Results from the Air Mass Transformation Experiment (AMTEX)’,Bull. Amer. Meteorol. Soc. 57, 1346–1355.

    Google Scholar 

  • Lewellen, W. S.: 1977, ‘Use of Invariant Modeling’,Handbook of Turbulence, Plenum, 237–290.

  • Lilly, D. K.: 1968, ‘Models of Cloud-Topped Mixed Layers under a Strong Inversion’,Quart. J. Roy. Meteorol. Soc. 94, 292–309.

    Google Scholar 

  • Melfi, S. H., Spinshirne, J. D., Chou, S.-H. and Palm, S. P.: 1985, ‘Lidar Observations of Vertically Organized Convection in the Planetary Boundary Layer over the Ocean’,J. Climate Appl. Meteorol. 24, 806–821.

    Article  Google Scholar 

  • Mellor, G. L. and Yamada, T.: 1974, ‘A Hierachy of Turbulence Closure Models for Planetary Boundary Layers’,J. Atmos. Sci. 31, 1791–1806.

    Article  Google Scholar 

  • Moeng, C.-H. and Schumann, U.: 1991, ‘Composite Structure of Plumes in Stratus-Topped Boundary Layers’,J. Atmos. Sci. 48, 2280–2291.

    Article  Google Scholar 

  • Müller, G.: 1995, ‘Mesoskalige Zellularkonvektion in Abhängigkeit von unterschiedlichen physikalischen Prozessen und synoptischen Randbedingungen - Numerische Simulationen’,Berichte aus dem Zentrum für Meeres- u. Klimaforschung, Reihe A16, 144 pp.

  • Raasch, S.: 1990, ‘Numerical Simulation of the Development of the Convective Boundary Layer During a Cold Air Outbreak’,Boundary-Layer Meteorol. 52, 349–357.

    Article  Google Scholar 

  • Rayleigh, D.: 1916, ‘On Convection Currents in a Horizontal Layer of Fluid, When the Higher Temperature is on the Under Side’,Phil. Mag. Ser. 6(32), 529–546.

    Article  Google Scholar 

  • Rothermel, J. and Agee, E. M.: 1986, ‘A Numerical Study of Atmospheric Convective Scaling’,J. Atmos. Sci. 43, 1185–1197.

    Article  Google Scholar 

  • Sasaki, Y.: 1970, ‘Influences of Thermal Boundary Layer on Atmospheric Cellular Convection’,J. Meteorol. Soc. Japan 48, 492–502.

    Google Scholar 

  • Sheu, P.-J., Agee, E. M. and Tribbia, J. J.: 1980, ‘A Numerical Study of Physical Processes Affecting Convective Cellular Geometry’,J. Meteorol. Soc. Japan 58, 489–498.

    Google Scholar 

  • Sommeria, G. and Deardorff, J. W.: 1977, ‘Subgrid-Scale Condensation in Mmodels of Nonprecipitating Clouds’,J. Atmos. Sci. 34, 344–355.

    Article  Google Scholar 

  • Sündermann, A.: 1990, ‘Die Anwendung von adaptiven Gittern in zwei einfachen Modellen für eine atmosphärische Rollenzirkulation’,Berichte aus dem Zentrum für Meeres- u. Klimaforschung, Nr. 5.

  • Sykes, R. I., Lewellen, W. S. and Henn, D. S.: 1988, ‘A Numerical Study of the Development of Cloud Street Spacing’,J. Atmos. Sci. 45, 2556–2569.

    Article  Google Scholar 

  • Sykes, R. I., Lewellen, W. S. and Henn, D. S.: 1990, ‘Numerical Simulation of the Boundary-Layer Eddy Structure During the Cold-Air Outbreak of GALE IOP2’,Mon. Wea. Rev. 118, 363–374.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Müller, G., Chlond, A. Three-dimensional numerical study of cell broadening during cold-air outbreaks. Boundary-Layer Meteorol 81, 289–323 (1996). https://doi.org/10.1007/BF02430333

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02430333

Keywords

Navigation