, Volume 11, Issue 5–6, pp 362–365 | Cite as

Ionic conductivity studies on Sr stabilized zirconia by impedance spectroscopy

  • M. S. Bhuvaneswari
  • S. Selvasekarapandian
  • G. Hirankumar
  • R. Baskaran
  • M. Vijayakumar


Sr stabilized zirconia has been prepared by the co-precipitation method and electrically characterized by using impedance spectroscopy in the frequency range from 42 Hz to 5 MHz. The charge carrier concentration of the material has been calculated from the conductance spectra and it is found to be of the order of 1025 cm−3. The conductance spectra show a dc plateau and a dispersive region suggesting correlated hopping motion of the ions. The impedance analysis shows a depressed semicircle indicating non-Debye nature of the material as well as the broad nature of modulus peaks indicates non-Debye behaviour. The bulk resistance of the material has been extracted from the impedance spectra and it is found to be 3.5×107 Ω·cm−1 at 673 K. The low frequency dispersion of the dielectric constant implies the space charge effects arising from the electrodes.


Zirconia Dielectric Constant Impedance Spectroscopy Renewable Energy Source Impedance Spectrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

5. References

  1. [1]
    E.N.S. Mucillo and M. Kleitz, J. Europ. Ceram. Soc.16, 45 (1996).Google Scholar
  2. [2]
    W. Weppner, Solid State Ionics52, 15 (1992).CrossRefGoogle Scholar
  3. [3]
    T. Tsai, S.A. Barnett, Solid State Ionics98, 191 (1997).CrossRefGoogle Scholar
  4. [4]
    Y-B. Cheng and D.P. Thompson, J. Am. Ceram. Soc.76, 683 (1993).CrossRefGoogle Scholar
  5. [5]
    S.P.S. Badwal and K. Foger, Mater. Forum21, 187 (1997).Google Scholar
  6. [6]
    M. Kuwabara, T. Murakami, Ashizuka, Y. Kubota and T. Tsukidate, J. Mat. Sci. Lett.4, 467 (1985).CrossRefGoogle Scholar
  7. [7]
    M. Vijayakumar, S. Selvasekarapandian, M.S. Bhuvaneswari, G. Hirankumar, G. Ramprasad, R. Subramanian and P.C. Angelo, Physica B334, 390 (2003).CrossRefGoogle Scholar
  8. [8]
    A. Orliukas, P. Bohac, K. Sasaki and L. Gauckler, J. Europ. Ceram. Soc.12, 87 (1993).CrossRefGoogle Scholar
  9. [9]
    P. Abelard and J. Baumard, Phys. Rev. B26, 1005 (1982).CrossRefGoogle Scholar
  10. [10]
    D.P. Almond, G.K. Duncan and A.R. West, Solid State Ionics8, 159 (1983).CrossRefGoogle Scholar
  11. [11]
    J.T.C. Irvine, D.C. Sinclair and A.R. West, Adv. Mater.2, 138 (1990).CrossRefGoogle Scholar
  12. [12]
    G. Williams and D.C. Watts, Trans. Faraday Soc.66, 80 (1970).CrossRefGoogle Scholar
  13. [13]
    K.L. Nagi, S.W. Martin, Phys. Rev. B40, 10550 (1989).CrossRefGoogle Scholar
  14. [14]
    M. Vijayakumar, G. Hirankumar, M.S. Bhuvaneswari and S. Selvasekarapandian, J. Power Sources5250, 1–6 (2003).Google Scholar
  15. [15]
    F.S. Howell, R.A. Bose, P.B. Macedo, and C.T. Moynihan, J. Phys. Chem.78, 639 (1974).CrossRefGoogle Scholar

Copyright information

© IfI - Institute for Ionics 2005

Authors and Affiliations

  • M. S. Bhuvaneswari
    • 1
  • S. Selvasekarapandian
    • 1
  • G. Hirankumar
    • 1
  • R. Baskaran
    • 1
  • M. Vijayakumar
    • 1
  1. 1.Solid State and Radiation Physics Lab Department of PhysicsBharathiar UniversityCoimbatoreIndia

Personalised recommendations