Journal of Nonlinear Science

, Volume 3, Issue 1, pp 445–458 | Cite as

Random number generation using a chaotic circuit

  • T. Kuusela


A simple method to generate pseudorandom numbers is presented. The basic part of the circuit consists of two identical nonautonomous chaotic oscillators, which are driven by an external clock signal. The well-known chaotic circuits are extremely simple, as they are composed only of an inductor and a capacitance diode, and thus it is easy to get the generator to work reliably. The output of the oscillators is discretized by a comparator, and these signals are mixed together using a D flip-flop. The distribution, the spectrum, the return map, and the autocorrelation of random numbers obtained by this circuit are shown. We have studied the system also using the correlation integral method and the local prediction technique. The results of these analyses demonstrate that the number sequence is highly random.

Key words

random number chaos chaotic circuit 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. Letham, D. Hoff, A. Folmsbee.IEEE J. Solid State Circuits SC-21 (1986) 881.CrossRefGoogle Scholar
  2. 2.
    J. D. Long.Electronics 51 (1978).Google Scholar
  3. 3.
    G. M. Bernstein, M. A. Lieberman.IEEE Trans. Circuits Syst. CAS-37 (1990) 1157.MathSciNetCrossRefGoogle Scholar
  4. 4.
    Y. S. Tang, A. I. Mees, L. O. Chua.IEEE Trans. Circuits Syst. CAS-30 (1983) 620.MathSciNetCrossRefGoogle Scholar
  5. 5.
    S. Oishi, H. Inoue.Trans. IECE Japan E 65 (182) 534.Google Scholar
  6. 6.
    P. S. Lindsay.Phys. Rev. Lett. 47 (1981) 1349.CrossRefGoogle Scholar
  7. 7.
    R. W. Rollins, E. R. Hunt.Phys. Rev. Lett. 49 (1982) 1295.MathSciNetCrossRefGoogle Scholar
  8. 8.
    T. Klinker, W. Meyer-Ilse, W. Lauterborn.Phys. Lett. 101A (1984) 371.Google Scholar
  9. 9.
    T. Matsumoto, L. O. Chua, S. Tanaka.Phys. Rev. A 30 (1984) 1155.CrossRefGoogle Scholar
  10. 10.
    J. M. Perez.Phys. Rev. A 32 (1985) 2513.CrossRefGoogle Scholar
  11. 11.
    S. Tanaka, T. Matsumoto, L. O. Chua.Physica 28D (1987) 317.MathSciNetGoogle Scholar
  12. 12.
    N. H. Packard, J. P. Crutchfield, J. D. Farmer, R. S. Shaw.Phys. Rev. Lett. 45 (1980) 712.CrossRefGoogle Scholar
  13. 13.
    P. Grassberger, I. Procaccia.Physica 9D (1983) 189.MathSciNetGoogle Scholar
  14. 14.
    Y. Termonia, Z. Alexandrowicz.Phys. Rev. Lett. 51 (1983) 1265.MathSciNetCrossRefGoogle Scholar
  15. 15.
    P. Grassberger, I. Procaccia.Phys. Rev. Lett. 50 (1983) 346.MathSciNetCrossRefGoogle Scholar
  16. 16.
    P. Grassberger, I. Procaccia.Phys. Rev. A 28 (1983) 2591.CrossRefGoogle Scholar
  17. 17.
    A. Ben-Mizrachi, I. Procaccia.Phys. Rev. A 29 (1984) 975.CrossRefGoogle Scholar
  18. 18.
    L. A. Smith.Phys. Lett. A 133 (1988) 283.CrossRefGoogle Scholar
  19. 19.
    D. Ruelle.Proc. R. Soc. A 427 (1990) 241.zbMATHMathSciNetGoogle Scholar
  20. 20.
    J. Farmer, J. Sidorowich.Phys. Rev. Lett. 59 (1987) 845.MathSciNetCrossRefGoogle Scholar
  21. 21.
    M. Casdagli.Physica 35D (1989) 335.MathSciNetGoogle Scholar
  22. 22.
    G. Sugihara, R. May.Nature 344 (1990) 734.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York Inc 1993

Authors and Affiliations

  • T. Kuusela
    • 1
  1. 1.Department of Applied PhysicsUniversity of TurkuTurkuFinland

Personalised recommendations