Skip to main content
Log in

Strongly nonlinear modal equations for nearly integrable PDEs

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Summary

The purpose of this paper is the derivation of reduced, finite-dimensional dynamical systems that govern the near-integrable modulations ofN-phase, spatially periodic, integrable wavetrains. The small parameter in this perturbation theory is the size of the nonintegrable perturbation in the equation, rather than the amplitude of the solution, which is arbitrary. Therefore, these reduced equations locally approximate strongly nonlinear behavior of the nearly integrable PDE. The derivation we present relies heavily on the integrability of the underlying PDE and applies, in general, to anyN-phase periodic wavetrain. For specific applications, however, a numerical pretest is applied to fix the truncation orderN. We present one example of the reduction philosophy with the damped, driven sine-Gordon system and summarize our present progress toward application of the modulation equations to this numerical study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. A. Overman, D. W. McLaughlin, A. R. Bishop, Coherence and Chaos in the Driven, Damped Sine-Gordon Equation: Measurement of the Soliton Spectrum,Physica 19D, 1–41 (1986).

    MathSciNet  Google Scholar 

  2. A. R. Bishop, M. G. Forest, D. W. McLaughlin, E. A. Overman, A. Quasiperiodic Route to Chaos in a Near-Integrable PDE,Physica 23D, 293–328 (1986); A Quasiperiodic Route to Chaos in a Near-Integrable PDE: Homoclinic Crossings,Phys. Lett. A 127 (6,7), 335–340 (1988); A. R. Bishop, R. Flesch, M. G. Forest, D. W. McLaughlin, E. A. Overman, Correlations Between Chaos in a Perturbed Sine-Gordon Equation and A Truncated Model System,SIAM J. Math. Anal. 21 (6), 1–25 (1990); D. W. McLaughlin and E. A. Overman, Whiskered Tori for Integrable Pde's: Chaotic Behavior in Near Integrable Pde's,Surv. in Appl. Math. 1, 1, (1992).

    MathSciNet  Google Scholar 

  3. M. G. Forest, S. P. Sheu, A. Sinha, Frequency and Phase Locking of Spatially Periodic, Perturbed Sine-Gordon Breather Trains,SIAM J. Appl. Math.,52, 746–761 (1992).

    Article  MATH  MathSciNet  Google Scholar 

  4. M. G. Forest, A. Sinha, A Numerical Study of Nearly Integrable Modulation Equations,Singular Limits of Dispersive Wave Equations, Eds. N. M. Ercolani, C. D. Levermore, D. Serre, Plenum Press, New York, to appear.

  5. P. Deift, R. Oba, S. Venakides, The Toda Shock Problem, to appear,Comm. Pure Appl. Math.; A. Bloch, Y. Kodama, Dispersive Regularization of the Whitham Equation for the Toda Lattice,SIAM J. Appl. Math. 52, 909 (1992).

    Google Scholar 

  6. P. Constantin, C. Foias, Global Lyapunov Exponents, Kaplan-Yorke Formulas and the Dimension of Attractors for 2D Navier-Stokes Equations,Comm. Pure Appl. Math. 38, 1–27 (1985); P. Constantin, C. Foias, R. Temam,AMS Memoirs 53 (314), 1–66 1985; C. Doering, J. D. Gibbon, D. D. Holm, B. Nicolaenko, Low Dimensionality in the Complex Ginzburg-Landau Equation,Nonlinearity 1, 279 (1988);Phys. Rev. Lett. 59, 2911 (1987).

    MATH  MathSciNet  Google Scholar 

  7. E. Trubowitz, J. Garnett,Comm. Math. Helv., 1984; V. Marcenko, I. Ostrovskii,Sov. Math. Dokl. 16, 761–765, 1975.

  8. N. M. Ercolani, Private Notes, 1988.

  9. M. G. Forest, D. W. McLaughlin, Spectral Theory for the Periodic Sine-Gordon Equation: A Concrete Viewpoint,J. Math. Phys. 23 (7), 1248–1277 (1982).

    Article  MATH  MathSciNet  Google Scholar 

  10. N. M. Ercolani, M. G. Forest, The Geometry of Real Sine-Gordon Wavetrains,Comm. Math. Phys. 99, 1–49 (1985).

    Article  MATH  MathSciNet  Google Scholar 

  11. G. B. Whitham,Linear and Nonlinear Waves, Wiley, New York, 1974.

    Google Scholar 

  12. M. G. Forest, D. W. McLaughlin, Modulations of Perturbed KdV Wavetrains,SIAM J. Appl. Math. 44 (2), 287–300 (1984).

    Article  MATH  MathSciNet  Google Scholar 

  13. H. Flaschka, M. G. Forest, D. W. McLaughlin, Multiphase Averaging and the Inverse Spectral Solution of the KdV Equation,Comm. Pure Appl. Math. 33, 739–784 (1980).

    MATH  MathSciNet  Google Scholar 

  14. M. Kruskal, R. Miura, Application of a Nonlinear WKB Method to the KdV Equation,SIAM J. Appl. Math. 26, 376–395 (1974).

    Article  MATH  MathSciNet  Google Scholar 

  15. M. G. Forest, D. W. McLaughlin, Modulations of Sinh-Gordon and Sine-Gordon Wavetrains,Studies in Applied Mathematics 68, 11–59 (1983).

    MATH  MathSciNet  Google Scholar 

  16. N. M. Ercolani, M. G. Forest, D. W. McLaughlin, Modulational Stability of Two-Phase Sine-Gordon Wavetrains,Stud. Appl. Math. 71 (2), 91–101 (1984).

    MATH  MathSciNet  Google Scholar 

  17. M. G. Forest, J.-E. Lee, Geometry and Modulation Theory for the Periodic Nonlinear Schrödinger Equation,IMA Volumes in Math. and Its Applications, Vol. 2, 1986, Ed. D. Kinderlehrer et al.

  18. N. M. Ercolani, M. G. Forest, D. W. McLaughlin, R. Montgomery, Hamiltonian Structure for the Modulation Equations of a Sine-Gordon Wavetrain,Duke Math. J. 55 (4), 949–983 (1987).

    Article  MATH  MathSciNet  Google Scholar 

  19. P. Griffiths, J. Harris,Principles of Algebraic Geometry, Wiley, New York, 1978.

    Google Scholar 

  20. N. M. Ercolani, M. G. Forest, D. W. McLaughlin, Geometry of the Modulational Instability, Part I: Local Analysis, to appear,AMS Memoirs; Geometry of the Modulational Instability, Part II: Global Results, to appear,AMS Memoris; Homoclinic Orbits for the Periodic Sine-Gordon Equation,Physica D 43, 349–384 (1990).

  21. R. Flesch, M. G. Forest, A. Sinha, Numerical IST for the Periodic Sine-Gordon Equation,Physica D. 48, 169–231 (1991).

    Article  MATH  MathSciNet  Google Scholar 

  22. Bikbaev, R. F., Kuksin, S. B., Periodic Boundary Problem for the Sine-Gordon Equation, its Small Hamiltonian Perturbations, and KAM-Deformations to the Finite-Gap Toni,Algebra Anal. 4 (3), 42–78 (1992).

    MATH  MathSciNet  Google Scholar 

  23. S.-P. Sheu, Ph. D. Dissertation, Ohio State University, 1992.

  24. G. Terrones, D. W. McLaughlin, E. A. Overman, A. J. Pearlstein, Stability and Bifurcation of Spatially Coherent Solutions of the Damped Driven NLS Equation,SIAM J. of Appl. Math. 50, 791 (1990).

    Article  MATH  MathSciNet  Google Scholar 

  25. J. Guckenheimer, P. Holmes,Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Applied Mathematical Sciences Series, Vo. 42, Springer-Verlag, New York, 1983.

    Google Scholar 

  26. M. Bartuccelli, P. L. Christensen, V. Muto, M. P. Sorensen, N. F. Pederson, Chaotic Behavior of a Pendulum with Variable Length,Nuovo Cimento 100B, 229 (1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by Thanasis Fokas

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ercolani, N.M., Forest, M.G., McLaughlin, D.W. et al. Strongly nonlinear modal equations for nearly integrable PDEs. J Nonlinear Sci 3, 393–426 (1993). https://doi.org/10.1007/BF02429871

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02429871

Key words

Navigation