Skip to main content
Log in

On the dissipation due to wave ringing in nonelliptic elastic materials

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Summary

Initial-boundary value problems describing the mechanics of nonelliptic elastic materials give rise to solutions that involve phase boundaries, the motion of which can dissipate mechanical energy. We investigate whether this dissipation, acting alone, can drive such a system toward equilibrium. Moving phase boundaries are regarded as a localized dissipative mechanism, and we consider a model which specifically excludes dissipation away from a phase boundary (such as that due to viscoelastic damping). In the problem under consideration, wave packets reverberate between the fixed external boundary and a single internal phase boundary. The phase boundary remains stationary unless it is acted upon by one of these wave packets, and each such interaction dissipates a finite amount of energy while causing the initiating wave packet to split into a reflected wave packet and a transmitted wave packet. Consequently, the number of wave packets increases in a geometric fashion. Each individual interaction of a wave packet with the phase boundary is, in a certain sense, mechanically underdetermined, and we augment the mechanical theory with two alternative energy criteria, each of which determines a different interaction dynamics. These alternative energy criteria are motivated by considerations of maximizing the energy dissipation in the system. We treat a system that is perturbed out of an initial minimum energy equilibrium state by a disturbance at the external boundary. A framework is developed for treating the resulting wave reverberations and calculating the energy dissipation for large time. Numerical computation indicates that the total energy dissipated in both versions of the dynamical problem is that which is necessary to settle into a new energy-minimal equilibrium state. We then establish the same result analytically for a meaningful limit involving a vanishingly small dynamical perturbation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • R. Abeyaratne (1980). Discontinuous deformation gradients in plane finite elastostatics of incompressible materials.J. Elasticity 10, 255–293.

    Article  MATH  MathSciNet  Google Scholar 

  • R. Abeyaratne (1983). An admissibility condition for equilibrium shocks in finite elasticity.J. Elasticity 13, 175–184.

    MATH  MathSciNet  Google Scholar 

  • R. Abeyaratne and J. K. Knowles (1987). Non-elliptic elastic materials and the modeling of dissipative mechanical behavior: an example.J. Elasticity 18, 227–278.

    Article  MATH  MathSciNet  Google Scholar 

  • R. Abeyaratne and J. K. Knowles (1988). On the dissipative response due to discontinuous strains in bars of unstable elastic material.International Journal of Solids and Structures 24, 1021–1044.

    Article  MATH  MathSciNet  Google Scholar 

  • R. Abeyaratne and J. K. Knowles (1990). On the driving traction acting on a surface of strain discontinuity in a continuum.J. Mechanics and Physics of Solids 38, 345–360.

    Article  MATH  MathSciNet  Google Scholar 

  • R. Abeyaratne and J. K. Knowles (1991a). Kinetic relations and the propagation of phase boundaries in solids.Arch. Ration. Mech. & Anal. 114, 119–154.

    Article  MATH  MathSciNet  Google Scholar 

  • R. Abeyaratne and J. K. Knowles (1991b). Implications of viscosity and strain gradient effects for the kinetics of propagating phase boundaries in solids.SIAM J. on Applied Math. 51, 1205–1221.

    Article  MATH  MathSciNet  Google Scholar 

  • J. M. Ball (1977). Convexity conditions and existence theorems in nonlinear elasticity.Arch. Ration. Mech. & Anal. 63, 337–403.

    MATH  Google Scholar 

  • J. M. Ball and R. D. James (1987). Fine phase mixtures as minimizers of energy.Arch. Ration. Mech. & Anal. 100, 13–52.

    Article  MATH  MathSciNet  Google Scholar 

  • J. M. Ball, P. J. Holmes, R. D. James, R. L. Pego, and P. J. Swart (1991). On the dynamics of fine structure.J. Nonlinear Sci. 1, 17–70.

    Article  MATH  MathSciNet  Google Scholar 

  • C. M. Dafermos (1973). The entropy rate admissibility criterion for solutions of hyperbolic conservation laws.J. Differ. Equations 14, 202–212.

    Article  MATH  MathSciNet  Google Scholar 

  • J. L. Ericksen (1975). Equilibrium of bars.J. Elasticity 5, 191–201.

    Article  MATH  MathSciNet  Google Scholar 

  • H. Fan (1992). Global versus local admissibility criteria for dynamic phase boundaries. To appear inProc. Royal Soc. of Edinburgh.

  • H. Fan and M. Slemrod (1991). The Riemann problem for systems of conservation laws of mixed type. To appear inShock Induced Transitions and Phase Structures in General Media. Ed. R. Fosdick, E. Dunn, & M. Slemrod, vol. 52. IMA, Springer-Verlag.

  • R. L. Fosdick and G. Macsithigh (1983). Helical shear of an elastic, circular tube with a nonconvex stored energy.Arch. Ration. Mech. & Anal. 84, 31–53.

    MATH  MathSciNet  Google Scholar 

  • E. Fried (1991). Stability of a two-phase process in an elastic solid. To appear inJ. Elasticity.

  • M. E. Gurtin (1983). Two-phase deformations of elastic solids.Arch. Ration. Mech. & Anal. 84, 1–29.

    MATH  MathSciNet  Google Scholar 

  • M. E. Gurtin (1991). On thermomechanical laws for the motion of a phase interface.ZAMP 42, 370–388.

    Article  MATH  MathSciNet  Google Scholar 

  • M. E. Gurtin and A. Struthers (1990). Multiphase thermomechanics with interfacial structure 3. Evolving phase boundaries in the presence of bulk deformation.Arch. Ration. Mech. & Anal. 112, 97–160.

    Article  MATH  MathSciNet  Google Scholar 

  • H. Hattori (1986). The Riemann problem for a van der Waals fluid with entropy rate admissibility criterion—isothermal case.Arch. Ration. Mech. & Anal. 92, 247–263.

    MATH  MathSciNet  Google Scholar 

  • R. D. James (1979). Co-existent phases in the one-dimensional static theory of elastic bars.Arch. Ration. Mech. & Anal. 72, 99–140.

    MATH  Google Scholar 

  • R. D. James (1980). The propagation of phase boundaries in elastic bars.Arch. Ration. Mech. & Anal. 73, 125–158.

    Article  MATH  Google Scholar 

  • R. D. James (1981). Finite deformation by mechanical twinning.Arch. Ration. Mech. & Anal 77, 143–176.

    MATH  Google Scholar 

  • R. D. James (1984). On the stability of phases.International Journal of Engineering Science 22, 1193–1197.

    Article  MATH  Google Scholar 

  • R. D. James (1986). Displacive phase transformations in solids.J. Mechanics and Physics of Solids 34, 359–394.

    Article  MATH  Google Scholar 

  • N. Kikuchi and N. Triantafyllidis (1982). On a certain class of elastic materials with non-elliptic energy densities.Quarterly of Applied Mathematics 40, 241–248.

    MATH  MathSciNet  Google Scholar 

  • J. K. Knowles (1979). On the dissipation associated with equilibrium shocks in finite elasticity.J. Elasticity 9, 131–158.

    Article  MATH  MathSciNet  Google Scholar 

  • J. K. Knowles and E. Sternberg (1978). On the failure of ellipticity and the emergence of discontinuous deformation gradients in plane finite elastostatics.J. Elasticity 8, 329–379.

    Article  MATH  MathSciNet  Google Scholar 

  • J. Lin and T. J. Pence (1991). Energy dissipation in an elastic material containing a mobile phase boundary subjected to concurrent dynamic pulses.Transactions of the Ninth Army Conference on Applied Mathematics and Computing. Ed. F. Dressel, 437–450.

  • R. L. Pego (1987). Phase transitions in one-dimensional nonlinear viscoelasticity: admissibility and stability.Arch. Ration. Mech. & Anal. 97, 353–394.

    Article  MATH  MathSciNet  Google Scholar 

  • T. J. Pence (1986). On the emergence and propagation of a phase boundary in an elastic bar with a suddenly applied end load.J. Elasticity 16, 3–42.

    Article  MATH  MathSciNet  Google Scholar 

  • T. J. Pence (1987). Formulation and analysis of a functional equation describing a moving one-dimensional elastic phase boundary.Quarterly of Applied Mathematics 45, 293–304.

    MATH  MathSciNet  Google Scholar 

  • T. J. Pence (1991a). On the encounter of an acoustic shear pulse with a phase boundary in an elastic material: reflection and transmission behavior.J. Elasticity 25, 31–74.

    Article  MATH  MathSciNet  Google Scholar 

  • T. J. Pence (1991b). On the encounter of an acoustic shear pulse with a phase boundary in an elastic material: energy and dissipation.J. Elasticity 26, 95–146.

    MATH  MathSciNet  Google Scholar 

  • T. J. Pence (1992). On the mechanical dissipation of solutions to the Riemann problem for impact involving a two-phase elastic material.Arch. Ration. Mech. & Anal. 117, 1–52.

    Article  MATH  MathSciNet  Google Scholar 

  • M. Shearer (1982). The Riemann problem for a class of conservation laws of mixed type.J. Differ. Equations 46, 426–443.

    Article  MATH  MathSciNet  Google Scholar 

  • M. Shearer (1986). Nonuniqueness of admissible solutions of Riemann initial value problems for a system of conservation laws of mixed type.Arch. Ration. Mech. & Anal 93, 45–59.

    MATH  MathSciNet  Google Scholar 

  • M. Shearer (1988). Dynamic phase transitions in a van der Waals gas.Quarterly of Applied Mathematics 46, 631–636.

    MATH  MathSciNet  Google Scholar 

  • S. A. Silling (1988). Consequences of the Maxwell relation for anti-plane shear deformations of an elastic solid.J. Elasticity 19, 241–284.

    Article  MATH  MathSciNet  Google Scholar 

  • S. A. Silling (1989). Phase changes induced by deformation in isothermal elastic crystals.J. Mechanics and Physics of Solids 37, 293–316.

    Article  MATH  Google Scholar 

  • S. A. Silling (1992). Dynamic growth of martensitic plates in an elastic material.J. Elasticity 28, 143–164.

    Article  MATH  Google Scholar 

  • M. Slemrod (1983). Admissibility criteria for propagating phase boundaries in a van der Waals fluid.Arch. Ration. Mech. & Anal. 81, 301–315.

    MATH  MathSciNet  Google Scholar 

  • M. Slemrod (1989). A limiting “viscosity” approach to the Riemann problem for materials exhibiting change of phase.Arch. Ration. Mech. & Anal. 105, 327–365.

    Article  MATH  MathSciNet  Google Scholar 

  • L. M. Truskinovsky (1982). Equilibrium phase interfaces.Sov. Phys. Dokl. 27, 551–553.

    Google Scholar 

  • L. M. Truskinovsky (1985). Structure of an isothermal phase discontinuity.Sov. Phys. Dokl. 30, 945–948.

    Google Scholar 

  • L. M. Truskinovsky (1987). Dynamics of non-equilibrium phase boundaries in a heat conducting non-linearly elastic medium.J. Applied Mathematics and Mechanics (PMM, USSR) 51, 777–784.

    Article  MathSciNet  Google Scholar 

  • L. M. Truskinovsky (1990). Kinks versus shocks. To appear inShock Induced Transitions and Phase Structures in General Media. Ed. R. Fosdick. E. Dunn, & M. Slemrod, vol. 52. IMA, Springer-Verlag.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by Philip Holmes

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, J., Pence, T.J. On the dissipation due to wave ringing in nonelliptic elastic materials. J Nonlinear Sci 3, 269–305 (1993). https://doi.org/10.1007/BF02429867

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02429867

Key words

Navigation