Advertisement

Biotechnology Techniques

, Volume 8, Issue 5, pp 301–306 | Cite as

Immobilization ofColeus blumei cells in a column reactor using a spray feeding system

  • Blanca C. Martinez
  • Chang-Ho Park
Article

Summary

Coleus blumei cells were immobilized in a column reactor packed withLuffa cylindrica pieces. Medium was fed from the top of the column using a spray system and cells maintained high viability for 52 days. Cell growth was slower but rosmarinic acid production was better compared to immobilized cells in the shake flasks.

Keywords

Rosmarinic Acid Column Reactor Fresh Cell Weight Immobilize Cell Culture Rosmarinic Acid Production 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Asada, M. and Shuler, M.L. (1989).Appl. Microbiol. Biotechnol. 30:475–481.CrossRefGoogle Scholar
  2. Barnabas, N.J. and David, S.B. (1988).Biotechnol. Lett. 10:593–596.CrossRefGoogle Scholar
  3. Brodelius, P. (1985). Immobilized Plant Cells. In:Enzymes and Immobilized Cells in Biotechnology (A.I. Laskin, ed.). pp 109–148. Benjamin/Cummings Publishing Co. Menlo Park, CA.Google Scholar
  4. Facchini, P.J. and DiCosmo, F. (1991).Biotechnol. Bioeng. 37:397–403.CrossRefGoogle Scholar
  5. Furuya, T., Koge, K. and Orihara, Y. (1990).Plant Cell Rep. 9:125–128.CrossRefGoogle Scholar
  6. Gamborg, O.L., Miller, R.A., Ojima, K. (1968).Exp. Cell Res. 50:151–158.CrossRefGoogle Scholar
  7. Hulst, A.C. and Tramper, J. (1989).Enzyme Microb. Technol. 11:546–558.CrossRefGoogle Scholar
  8. Ishida, B.K. (1988).Plant Cell Rep. 7:270–273.CrossRefGoogle Scholar
  9. Iqbal, M. and Safar, S.I. (1993).Biotechnology Technique 7:323–324.CrossRefGoogle Scholar
  10. Jose, W., Pederson, H. and Chin, C.-K. (1983).Ann. N.Y. Acad. of Sci. 413:409–412.Google Scholar
  11. Kargi, F. (1988).Biotech. Lett. 10:181–186.CrossRefGoogle Scholar
  12. Kargi, F. and Friedel, I. (1988).Biotechnol. Lett. 10:409–414.CrossRefGoogle Scholar
  13. Lindsey, K., Yeoman, M.M., Black, G.M. and Mavituna, F. (1983).FEBS Lett. 155:143–149.CrossRefGoogle Scholar
  14. Lindsey, K and Yeoman, M.M (1983). In:Plant Biotechnology. Soc. Exp. Biol. Semin. Ser. vol. 18. Mantell, S.H., Smith, H. (eds) Cambridge Univ. Press, Cambridge pp 39–66.Google Scholar
  15. Majerus, F. and Pareilleux, A. (1986).Biotechnol. Lett. 8:863–866.CrossRefGoogle Scholar
  16. Mavituna, F. and Park, J.M. (1985).Biotechnol. Lett. 7:637–640.CrossRefGoogle Scholar
  17. Park, C.-H. and Martinez, B.C. (1994).Plant Cell Rep. (in press).Google Scholar
  18. Park, C.-H. and Martinez, B.C. (1992).Biotechnol. Bioeng. 40:459–464.CrossRefGoogle Scholar
  19. Parr, A.J., Smith, J.I., Robins, R.J. and Rhodes, M.J. (1984).Plant Cell Rep. 3:161–164.CrossRefGoogle Scholar
  20. Schmidt, A.J., Lee, J. and An, G. (1989).Biotech. and Bioeng. 33:1437–1444.CrossRefGoogle Scholar
  21. Shuler, M.L. (1981).Ann. N.Y. Acad. Sci. 369: 65–79.Google Scholar
  22. Widholm, J.M. (1972).Stain Technol. 47:189–194.Google Scholar

Copyright information

© Kluwer Academic Publishers 1994

Authors and Affiliations

  • Blanca C. Martinez
    • 1
  • Chang-Ho Park
    • 1
  1. 1.Department of Agricultural EngineeringUniversity of MinnesotaSt. PaulUSA

Personalised recommendations