Advertisement

GeoJournal

, Volume 21, Issue 3, pp 195–222 | Cite as

The probability of proof in geomorphology —an example of the application of information theory to a new kind of glacigenetic morphological type, the ice-marginal ramp (Bortensander)

  • Kuhle Matthias 
Article

Abstract

The scientific acceptance of presentations of proof is largely dependent upon the parts of mathematical logic upon which they are based. This explains the trend of introducing quantitative methods into tho disciplines which — due to the historical dimensions of their subjects — have so far followed a qualitative analysis of character coincidences i.e. a typogenetic form of reasoning. But the application of reductionistic quantification such as was followed in the GMK 25 project foundered because of the polymorphic structure of the phenomena. It was this that made geomorphological proof so difficult, since an inductive basis for general lawful relations can only be provided by regionally detailed observations of complexes with developments of their own. The application of information theory however e.g. in relation to the glacigenetic Type ‘Bortensander’ or ice-marginal ramps (IMR) now allows the determination of the probability of the coincidental occurrence of characteristics and a measure of the probability of the causal nexus upon which this is based. By transposing the basis of induction on to an abstract plane a high degree of proof of typogenetic arguments in geomorphology may be provided. The quantification here does not count the elements of the proof directly but is related to the occurrence of those indicators which form the empirically based qualitative units of the inductive key.

Keywords

Qualitative Analysis Environmental Management Information Theory Mathematical Logic Quantitative Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barsch, D.; Dikau, R.: Entwicklung einer Digitalen Geomorphologischen Basiskarte (DGmBK). GIS-Geo-Informations-Systeme 2, 3, 12–18 (1989)Google Scholar
  2. Barsch, D.; Stäblein, G.: EDV-gerechter Symbolschlüssel für die geomorphologische Detailaufnahme. Berliner Geogr. Abh. 30, 63–78 (1978)Google Scholar
  3. Béguin, A.: Blaise Pascal. Rowohlt, Hamburg 1985.Google Scholar
  4. Bernhardi, A.: Wie kamen die aus dem Norden stammenden Felsbruchstücke und Geschiebe, welche man in Norddeutschland und den benachbarten Ländern findet, an ihre gegenwärtigen Fundorte? N. Jb. f. Min. u. Geol. 257–419 (1832)Google Scholar
  5. Brillouin, L.: Science and information theory. Academic Press, New York 1956.Google Scholar
  6. Carnap, R.: Einführung in die Philosophie der Naturwissenshaft. sammlung dialog 36, Nymphenburger Verlagsbuchh., München 1976.Google Scholar
  7. Ceram, C. W.: Götter, Gräber and Gellehrte. Rowohlt, Hamburg 1956.Google Scholar
  8. Dana, J. D.: Manual of Geology. Theodore Bliss and Co., Philadelphia 1863.Google Scholar
  9. Dreimanis, A.: Eine neue Methode der quantitativen Geschiebenforschung. Z. f. Geschiebeforschung 15 (1939)Google Scholar
  10. Esmark, J.: Remarks Tending to Explain the Geological History of the Earth. Edinburgh New Phil. Journ. 3 (1827)Google Scholar
  11. Goethe, J. W. v.: Naturwissenschaftliche Schriften. Hamburger Ausgabe, Bd. XIII, Chr. Wegener Verl., Hamburg 1966.Google Scholar
  12. Grotefend, G. F.: Beiträge zur Erläuterung der persepolitanischen Keilschrift. Hannover 1837.Google Scholar
  13. Klimaszewski, M.: On constructing detailed geomorphological maps. Z. Geomorph. N.F. 32, 4, 457–470 (1988)Google Scholar
  14. Köhler, W.: Die Aufgabe der Gestaltpsychologie. de Gruyter, Berlin 1971; engl.: The Task of Gestalt Psychology. Princeton Univ. Press 1969.Google Scholar
  15. Kuhle, M.: Beiträge zur Quartärmorphologie SE-Iranischer Hochgebirge. Die quartäre Vergletscherung des Kuh-i-Jupar. I, II, Göttinger Geogr. Abh. 67, I, 1–209, (II), Fig 1–164(1976)Google Scholar
  16. Kuhle, M.: Spuren der hocheiszeitlichen Gletscherbedeckung in der Aconcagua-Gruppe (32–33° S). Zbl. Geol. Paläont. Teil I, 11/12, 1635–1646 (1984a)Google Scholar
  17. Kuhle, M.: Zur Geomorphologie Tibets, Bortensander als Kennformen semiarider Vorlandvergletscherung. Berliner Geogr. Abh. 36, 127–137 (1984b)Google Scholar
  18. Kuhle, M.: Glacial, Nival and Periglacial Environments in Northeastern Qinghai-Xizang Plateau. Reports on the Northeastern Part of the Qinghai-Xizang (Tibet) Plateau by Sino-W-German Scientific Expedition, 176–244, China 1987a.Google Scholar
  19. Kuhle, M.: The Problem of a Pleistocene Inland Glaciation of the Northeastern Qinghai-Xizang Plateau. — Reports on the Northeastern Part of the Qingha-Xizang (Tibet) Plateau ni Sino-W-German Scientific Expedition, 250–315, China 1987b.Google Scholar
  20. Kuhle, M.: Subtropical Mountain — and Highland-Glaciation as Ice Age Triggers and the Waning of the Glacial Periods in the Pleistocene. GeoJournal 13, 6, 1–29 (1987c)Google Scholar
  21. Kuhle, M.: Geomorphological Findings on the Build-up of Pleistocene Glaciation in Southern Tibet and on the Problem of Inland-Ice. — Results of the Sino-German Joint Expeditions (I) GeoJournal 17, 4, 457–511 (1988a)Google Scholar
  22. Kuhle, M.: The Pleistocene Glaciation of Tibet and the Onset of Ice Ages — An Autocycle Hypothesis.— Results of the Sino-German Joint Expeditions (I), Geojournal 17, 4, 581–596 (1988b)Google Scholar
  23. Kuhle, M.: Eine reliefspezifische Eiszeittheorie. Die Geowissenschaften 6, 5, 142–150 (1988c)Google Scholar
  24. Kuhle, M.: Zur geomorphologie der nivalen und subnivalen Höhenstufe in der Karakorum-N-Abdachung zwischen Shaksgam-Tal K 2-N-Sporn: Die quartäre Vergletscherung und ihre geoökologischen Konsequenzen. Tagungsber. u. wiss. Abh. 46, Dt. Geographentag 1987, 308–311 (1988d)Google Scholar
  25. Kuhle, M.: Quantificational Reductionism as a Risk in Geography and Cartography. Instanced by the 1:25000 Geomorphological Map of the FR Germany. GeoJournal 18, 4, 441–450 (1989a)CrossRefGoogle Scholar
  26. Kuhle, M.: Quantifizierender Reduktionismus als Risiko in der Geographie, am Beispiel der GMK 1:25000 der BRD. In: Festschrift Wilhelm Kick, Actaa Albertina Ratisbonensia 46, 39–58 (1989b)Google Scholar
  27. Kuhle, M.: Ice Marginal Ramps: An Indicator of Semi-arid Piedmont Glaciations. GeoJournal 18, 2, 223–228 (1989c)CrossRefGoogle Scholar
  28. Kuhle, M.: Ice Marginal Ramps and Alluvial Fans in Semi-arid Mountains: Convergence and Difference. In: Rachocki, A. & M. A. Church (eds.), Alluvial Fans — A Field Approach. Wiley & Sons, Chichester 1990.Google Scholar
  29. Lorenz, K.: Kants Lehre vom Apriorischem in Lichte gegenwärtiger Biologie. Blätter f. Dt. Philosophie 15, 94–125 (1941)Google Scholar
  30. Lorenz, K.: Gestaltwahrnehmung als Quelle wissenschaftlicher Erkenntnis. Z. f. exp. u. angewandte Psychol. 4, 118–165 (1959)Google Scholar
  31. Lorenz, K.: Die Rückseite des Spiegels. Versuch einer Naturgeschichte menschlichen Erkennens. Piper, München, Zürich 1973.Google Scholar
  32. Lorenz, K.: Analogy as a source of knowledge. In: Les Prix Nobel en 1973. The Nobel Foundation 1974, 176–195 (1974)Google Scholar
  33. Lundqvist, J.: Glacigenic processes, deposits, and landforms. In: Goldthwait & Matsch (eds.), Genetic classification of Glacigenic Deposits. Balkema, Rotterdam 3–16, 1989.Google Scholar
  34. Lyell, Ch.: Principles of geology. London 1875. (1st ed. 1830–1833)Google Scholar
  35. Mach, E.: Erkenntnis und Irrtum. Skizzen zur Psychologie der Forschung. Wiss. Buchgesellschaft, Darmstadt 1976. Reprint of 5th ed., Leipzig 1926.Google Scholar
  36. Mayr, E.: Die Entwicklung der biologischen Gedankenwelt. — Vielfalt, Evolution and Vererbung. Springer, Berlin / New York 1984. engl.: The Growth of Biological Thought. Harvard Univ. Press, London 1982.Google Scholar
  37. Münnich, G.: Quantitative Geschiebeprofile aus Dänemark und Norddeutschland mit besonderer Berücksichtigung Vorpommerns. Abh. Geol. Pal. Inst. Univ. Greifswald 15, Beiheft z. Z. f. Geschiebeforschung 12 (1936)Google Scholar
  38. Oestreich, K.: Die Täler des nordwestlichen Himalaya. Petermanns Ergh. 155, 33, (1906)Google Scholar
  39. Penck, A.; Brückner, E.: Die Alpen im Eiszeitalter. Leipzig 1901/09.Google Scholar
  40. Raistrick, A.: The Petrology of some Yorkshire Boulder Clays. Geol. Mag. 66 (1929)Google Scholar
  41. Ramsay, A. C.: On the Occurrence of Angular, Subangular, Polished and Striated Fragments and Boulders in the Permian Breccia of Shropshire, Worcestershire and the Probable Existence of Glaciers and Icebergs in the Permian Epoch. Quart. Journ. 11 (1855)Google Scholar
  42. Remane, A.: Die Grundlagen des natürlichen Systems der vergleichenden Anatomie und der Phyolgenetik. 2nd ed.; Reprint of 1st ed. Geest u. Portig, Leipzig, 1952, Koeltz, Konigstein-Taunus 1971.Google Scholar
  43. Riedl, R.: Die Ordnung des Lebendigen. Systembedingungen der Evolution. Paul Parey, Hamburg/Berlin 1975. engl. ed. Order in living organisms: A systems analysis of evolution. Wiley, New York 1978.Google Scholar
  44. Riedl, R.: Biologie der Erkenntnis: die stammesgeschichtlichen Grundlagen deer Vernunft. Unter Mitarbeit v. R. Kaspar. 3rd ed., Parey, Berlin, Hamburg 1981.Google Scholar
  45. Riedl, R.: Begriff und Welt. Biologische Grundlagen des Erkennens und Begreifens. Parey, Berlin, Hamburg 1987.Google Scholar
  46. Schaefer, I.: Die Glaziale Serie. Gedanken zum Kernstück der alpinen Eiszeitforschung. Z. Geomorph. N.F. 25, 3, 271–289 (1981)Google Scholar
  47. 3chrödinger, E.: What is life? The physical aspect of the living cell. Univ. Press Cambridge 1944.Google Scholar
  48. Schrödinger, E.: Was it Leben? Die lebenden Zelle mit den Augen des Physikers betrachtet. Francke, Berlin 1951.Google Scholar
  49. Shannon, C.; Weaver, W.: The mathematical theory of communication. Univ. Illinois Press, Urbana 1949.Google Scholar
  50. Sokal, R.; Sneath, P.: Principles of numerical taxonomy. Freeman, San Francisco 1963.Google Scholar
  51. Stäblein, G.: Anforderungen an ein GIS bei der Naturraumpotentialanalyse. GIS — Geo-Informations-Systeme 2, 3, 26–31 (1989)Google Scholar
  52. Torell, O.: Undersökningar öfver istiden. Öfvers Vetensk. Akad. Förh. Stockholm 1972, 10; 1873, 1; in: Zeitschrift der Deutschen Geologischen Gesellschaft (1875) (Report and discussion on O. Torell's findings 3. 11. 1875 in Berlin).Google Scholar
  53. Ulrich, B.: Effects of Acidic Precipitation on Forest Ecosystems in Europe. Advances in Environmental Science Springer, Berlin, Heidelberg 2, 189–272, 1989.Google Scholar
  54. Ulrich, B.: Forest Decline in Ecosystem Perspective. In: Proceedings of the International Congress of Forest Decline Research, Friedrichshafen 2.–6. October 1989, Kernforschungszentrum Karlsruhe (1990) in print.Google Scholar
  55. Ussing, N. V.; Madsen, V.: Beskrivelse til det geologiske kortblad Hindsholm. Danmark Geol. Unders. 1. R., 2 (1897)Google Scholar
  56. Wiener, N.: Kybernetik. Regelung und Nachrichtenübertragung im Lebewesen und in der Maschine. Econ, Düsseldorf, Wien 1948.Google Scholar
  57. Windelband, W.; Heimsoeth, H.: Lehrbuch der Geschichte der Philosophie. 16th ed. (Reprint of 15th ed. 1957), Mohr, Tübingen 1976.Google Scholar
  58. Zilliacus, H.: De Geer moraines in Finland and the annual moraine problem. Fennia 165, 2, 145–239 (1987)Google Scholar

Copyright information

© Kluwer Academic Publishers 1990

Authors and Affiliations

  • Kuhle Matthias 
    • 1
  1. 1.Geogr. Inst.Universität GöttingenGöttingenGermany

Personalised recommendations