Advertisement

Applied Mathematics and Mechanics

, Volume 21, Issue 7, pp 849–854 | Cite as

Linearized oscillations for autonomous delay differential equations

  • Li Yongkun
Article
  • 27 Downloads

Abstract

The linearized oscillations of the nonlinear autonomous delay differential equation
$$x'\left( t \right) + \sum\limits_{i = 1}^m {f_i } \left( {x\left( {t - \tau _1 } \right), \cdots ,x\left( {t - \tau _m } \right)} \right) = 0$$
are studied.

Key words

delay differential equation oscillation nonoscillation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [ 1 ]
    Kulenovic MRC, Ladas G, Meimaridou A. On oscillation of nonlinear delay differential equations [J].Quart Appl Math, 1987,14(1):155 ∼ 164.MathSciNetGoogle Scholar
  2. [ 2 ]
    Zhang Binggeng. A number of problems in the oscillation theory of functional differential equations [ A]. In: Wang Lian, Pu Fuquan, Liu Yongqing Ed.The Theory and Application of Ordinary Differential Equations [ C ] . Bejing: Science Press, 1992,42 ∼ 45: (in Chinese)Google Scholar
  3. [ 3 ]
    Li Yongkun. Linearized oscillation of the first-order nonlinear delay differential equation[ J].Chinese Science Bulletin, 1994,39(13):1937∼ 1942.Google Scholar
  4. [ 4 ]
    Chai Shugen. Note on the paper “Linearized oscillation of first order nonlinear delay differential equation” [ J].J Math Research and Exposition, 1998,18(1):147 ∼ 148.Google Scholar
  5. [ 5 ]
    Ladas G, Sficas Y G, Stavroulakis I P. Necessary and sufficient conditions for oscillations[J].Amer Math Monthly, 1983,90(11):637 ∼ 640.CrossRefMathSciNetGoogle Scholar
  6. [ 6 ]
    Kocic V L J, Ladas G, Qian C. Linearized oscillations in, nonautonomous delay differential equations[J].Differential and Integral Equs,1993,6(3):671 ∼ 683.MathSciNetGoogle Scholar
  7. [ 7 ]
    Ladas G, Qian C, Yan J. A comparison result for the oscillation of delay differential equations [ J].Proc Amer Math Soc,1992,114(4):939 ∼ 947.CrossRefMathSciNetGoogle Scholar

Copyright information

© Editorial Committee of Applied Mathematics and Mechanics 1980

Authors and Affiliations

  • Li Yongkun
    • 1
  1. 1.Department of MathematicsYunnan UniversityKunmingP R China

Personalised recommendations