Applied Mathematics and Mechanics

, Volume 21, Issue 8, pp 915–920 | Cite as

On the spectral equivalence of unconventional finite elements and their conventional relatives

  • Huang Jian-guo
  • Mu Jian-fei


With a generalized conforming element as a typical example, the spectral equivalence of unconventional finite elements and their conventional relatives is proved. This result is very important for the construction of domain decomposition parallel algorithms for unconventional finite elements.

Key words

unconventional finite element generalized conforming element spectral equivalence CLC number: 0241.82 Document code: A 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Chan T F, Mathew T. Domain decomposition algorithms [J].Acta Numerica, 1994,2:61 ∼ 143.MathSciNetGoogle Scholar
  2. [2]
    Xu J C. Iterative methods by space decomposition and subspace correction [J].SIAM Review, 1992,34(3):581 ∼ 613.MATHCrossRefMathSciNetGoogle Scholar
  3. [3]
    Xu J C, Zou J. Non-overlapping domain decomposition methods [J].SIAM Review, 1998,40(4) 857 ∼ 914.CrossRefMathSciNetMATHGoogle Scholar
  4. [4]
    Ciarlet P G.The Finite Element Method far Elliptic Problem [M]. Amsterdam-New York-Oxford: North-Holland, 1978.Google Scholar
  5. [5]
    LONG Yu-qiu, XIN Ke-gui. A generalized conforming element [J].Journal of the Civil Engineering, 1987,1(1):1 ∼ 14. (in Chinese)CrossRefGoogle Scholar
  6. [6]
    SHI Zhong-ci, CHEN Shao-chun. Convergence of a nine parameter generalized conforming element [J].Numerica Mathemattca Sinica, 1991,13(2):193 ∼ 203. (in Chinese)MATHGoogle Scholar
  7. [7]
    LONG Yu-qiu.Introduction to The New-Type Finite Elements [M]. Beijing: Tsinghua University Press, 1992. (in Chinese)Google Scholar
  8. [8]
    CHEN Shao-chun, SIR Zhong-ci. Double set parameter method of constructing stiffness matrices [J].Numerica Mathematica Sinica,1991,13(3):286 ∼ 296. (in Chinese)MATHGoogle Scholar
  9. [9]
    Brenner S C. A two-level additive preconditioner for nonconforming plate elements [J].Numer Math, 1996,72(3):419 ∼ 447.MATHCrossRefMathSciNetGoogle Scholar
  10. [10]
    XIE Zheng-hui. Domain decomposition and multigrid methods for nonconforming plate elements [D]. Ph D Thesis. Beijing: The Institute of Computational Mathematics and Scientific/Engineering Computing, Chinese Academy of Sciences, 1996.Google Scholar
  11. [11]
    Bramble J H, Pasciak J E, Schatz A H. The construction of preconditioners for elliptic problems by substructuring, I [J].Math Comp, 1986,47(1):102 ∼ 134.CrossRefMathSciNetGoogle Scholar

Copyright information

© Editorial Committee of Applied Mathematics and Mechanics 1980

Authors and Affiliations

  • Huang Jian-guo
    • 1
  • Mu Jian-fei
    • 1
  1. 1.Department of Applied MathematicsShanghai Jiaotong UniversityShanghaiP R China

Personalised recommendations