Molecular and General Genetics MGG

, Volume 118, Issue 1, pp 45–50 | Cite as

The effect of a histidine operator-constitutive mutation on UV-induced mutability within the histidine operon ofSalmonella typhimurium

  • D. J. Savić
  • D. T. Kanazir


The presence of the histidine operator-constitutive mutationhis01242 increases UV-induced mutability within the histidine operon ofSalmonella typhimurium. The rate of reversion ofhisC andhisF ochre and frameshift mutants is increased 5- to 8-fold when these mutations are coupled withhis01242 which causes 15-fold derepression of the operon. The effect does not extend to the whole chromosome since the rate of UV-induced mutability at the unlinked streptomycin locus is the same in the strains carryinghis0 + orhis01242 alleles. The same phenomenon was observed in Hcr strains.


Reversion Frequency Nutrient Agar Plate Lactose Operon Histidinol Elevated Transcription 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Brenner, M., Ames, B. N.: The histidine operon and its regulation. In: Metabolic regulation: (H. J. Vogel, ed.), vol. 5 of metabolic pathways D. Greenberg, ed., p. 349. New York: Academic Press 1971.Google Scholar
  2. Cordaro, J. C., Balbinder, E.: An operator constitutive mutation in a mutant for the first structural gene of the tryptophane operon. Bact. Proc. GP15, 51 (1967).Google Scholar
  3. Fankhauser, D. B.: The promotor-operator region of thehis operon inSalmonella typhimurium. Ph. D. Thesis, The Johns Hopkins University. (1971).Google Scholar
  4. Hartman, P. E.: Linked loci in the control of consecutive steps in the primary pathway of histidine synthesis. Carnegie Inst. Wash. Publ. No612, 35 (1956).Google Scholar
  5. Hartman, P. E., Hartman, Z., Stahl, R. C., Ames, B. N.: Classification and mapping of spontaneous and induced mutations in the histidine operon ofSalmonella. Advanc. Genet.16, 1 (1971).CrossRefGoogle Scholar
  6. Herman, R. K.: Effect of gene induction on frequency of intragenic recombination of chromosome and F-merogenote inEscherischia coli K-12. Genetics58, 58 (1968).Google Scholar
  7. Herman, R. K., Dworkin, N. B.: Effect of gene induction on the rate of mutagenesis by ICR-191 inEscherschia coli. J. Bact.106, 545 (1971).Google Scholar
  8. Murray, M. L., Hartman, P. E.: Overproduction ofhisH andhisF gene products leads to cell division inhibition inSalmonella. Canad. J. Microbiol. in Press (1972).Google Scholar
  9. Oeschger, N. S., Hartman, P. E.: ICR-induced frameshift mutations in the histidine operon ofSalmonella. J. Bact.101, 490 (1970).PubMedGoogle Scholar
  10. Roth, J. R., Anton, D. N., Hartman, P. E.: Histidine regulatory mutants inSalmonella typhimurium. I. Isolation and general properties. J. molec. Biol.22, 305 (1966).PubMedCrossRefGoogle Scholar
  11. Savić, D. J.: A histidine operator-constitutive mutation decreases the frequency of recombination within the histidine operon ofSalmonella typhimurium. Genetics in Press (1972).Google Scholar
  12. Savić, D. J., Kanazir, D. T., Hartman, P. E.: Enhancement by transcription of mutation frequencies during recombination and after UV irradiation. Genetics, Suppl. 5,61, 53 (1969).Google Scholar
  13. Smith, H. O., Levine, M.: A phage P22 gene controlling integration of prophage. Virology31, 207 (1967).PubMedCrossRefGoogle Scholar
  14. Vogel, H. J., Bonner, D. M. Acetylornithinase ofEscherischia coli: Partial purification and some properties. J. biol. Chem.218, 97 (1956).PubMedGoogle Scholar

Copyright information

© Springer-Verlag 1972

Authors and Affiliations

  • D. J. Savić
    • 1
    • 2
  • D. T. Kanazir
    • 1
    • 2
  1. 1.Laboratory for BiochemistryInstitute for Nuclear Sciences “Boris Kidrič”, VinčaBeogradYugoslavia
  2. 2.Department for Molecular Biology, Faculty of SciencesUniversity of BeogradYugoslavia

Personalised recommendations