Skip to main content
Log in

An upstream signal is required for in vitro transcription ofNeurospora 5S RNA genes

  • Short Communication
  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Summary

The DNA sequences upstream of the 5S RNA genes inNeurospora crassa are largely different from one another, but share a short consensus sequence located in the segment 29 to 26 nucleotides preceding the transcribed region. Differences among flanking sequences do not appear to affect transcription. Deletion analysis indicates, however, that a DNA segment including the conserved “TATA box” is required for in vitro transcription of Neurospora 5S RNA genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Breathmach R, Chambon P (1981) Organization and expression of eudaryotic split genes coding for proteins. Annu Rev Biochem 50:343–383

    Google Scholar 

  • Ciliberto G, Castagnoli L, Melton DA, Cortese R (1982a) Promoter of a eukaryotic tRNAPro gene is composed of three noncontiguous regions. Proc Natl Acad Sci USA 79:1195–1199

    Article  PubMed  CAS  Google Scholar 

  • Ciliberto G, Traboni C, Cortese R (1982b) Relationship between the two components of the split promoter of eukaryotic tRNA genes. Proc Natl Acad Sci USA 79:1921–1925

    Article  PubMed  CAS  Google Scholar 

  • Ciliberto G, Raugei G, Costanzo F, Dente L, Cortese R (1983) Common and interchangeable elements in the promotoers of genes transcribed by RNA polymerase III. Cell 32:725–733

    Article  PubMed  CAS  Google Scholar 

  • Cooley L, Schaack J, Burke DJ, Thomas B, Söll D (1984) Transcription factor binding is limited by the 5′-flanking regions of aDrosophila tRNAHis gene and a tRNAHis pseudogene. Mol Cell Biol 4:2714–2722

    PubMed  CAS  Google Scholar 

  • DeFranco D, Schmidt O, Söll D (1980) Two control regions for eucaryotic tRNA gene transcription. Proc Natl Acad Sci USA 77:3365–3368

    Article  PubMed  CAS  Google Scholar 

  • DeFranco D, Sharp S, Söll D (1981) Identification of regulatory sequences contained in the 5′-flanking region ofDrosophila lysine tRNA2 genes. J Biol Chem 256:12424–12429

    PubMed  CAS  Google Scholar 

  • Dingermann T, Sharp S, Schaack J, Söll D (1983) Stable transcription complex formation of eukaryotic tRNA genes is dependent on a limited separation of the two intragenic control regions. J Biol Chem 258:10395–10402

    PubMed  CAS  Google Scholar 

  • Enver T (1985) Gene transcription: A pulling out of fingers. Nature 317:385–386

    Article  PubMed  CAS  Google Scholar 

  • Ford P (1980) Polymerase III control region defined. Nature 287:109–110

    Article  PubMed  CAS  Google Scholar 

  • Galli G, Hofstetter H, Birnstiel ML (1981) Two conserved sequence blocks within eukaryotic tRNA genes are major promoter elements. Nature 294:626–631

    Article  PubMed  CAS  Google Scholar 

  • Hipskind RA, Clarkson SG (1983) 5′-Flanking sequences that inhibitin vitro transcription of aXenopus laevis tRNA gene. Cell 34:881–890

    Article  PubMed  CAS  Google Scholar 

  • Indik Z, Tartof KD (1982) Glutamate tRNA genes are adjacent to 5S RNA genes in Drosophila and reveal a conserved upstream sequence (the ACT-TA box). Nucleic Acids Res 10:4159–4172

    PubMed  CAS  Google Scholar 

  • Johnson JD, Raymond GJ (1984) Three regions of yeast tRNA Leu3 gene promote RNA polymerase III transcription. J Biol Chem 259:5990–5994

    PubMed  CAS  Google Scholar 

  • Larson D, Bradford-Wilcox J, Young LS, Sprague KU (1983) A short 5′ flanking region containing conserved sequences is required for silkworm alanine tRNA gene activity. Proc Natl Acad Sci USA 80:3416–3420

    Article  PubMed  CAS  Google Scholar 

  • Maniatis T, Fritsch EF, Sambrook J (1982) Molecular Cloning Cold Spring Harbor Laboratory, NY

    Google Scholar 

  • Maxam AM, Gilbert W (1980) Sequencing end-labeled DNA with base-specific chemical cleavages. Methods Enzymol 65:455–560

    Google Scholar 

  • Metzenberg RL, Stevens JN, Selker EU, Morzycka-Wroblewska E (1985) Identification and chromosomal distribution of 5S rRNA genes inNeurospora crassa. Proc Natl Acad Sci USA 82:2067–2071

    Article  PubMed  CAS  Google Scholar 

  • Morton DG, Sprague KU (1984)In vitro transcription of a silkworm 5S RNA gene requires and upstream signal. Proc Natl Acad Sci USA 81:5519–5522

    Article  PubMed  CAS  Google Scholar 

  • Morzycka-Wroblewska E, Selker EU, Stevens JN, Metzenberg RL (1985) Concerted evolution of dispersedNeurospora crassa 5S RNA genes: patterns of sequence conservation between allelic and nonallelic genes, Mol Cell Biol 5:46–51

    PubMed  CAS  Google Scholar 

  • Pribnow D (1975) Nucleotide sequence of an RNA polymerase binding site at an early T7 promoter. Proc Natl Acad Sci USA 72:784–788

    Article  PubMed  CAS  Google Scholar 

  • Rubacha A, Sumner III A, Richter W, Beckingham K (1984) Conserved 5′ flank homologies in dipteran 5S RNA genes that would function on “A” form DNA. Nucleic Acids Res 12:8193–8207

    PubMed  CAS  Google Scholar 

  • Schaack J, Sharp S, Dingermann T, Burke DJ, Cooley L, Söll D (1984) The extent of a eukaryotic tRNA gene: 5′ and 3′ flanking sequence dependence for transcription and stable complex formation. J Biol Chem 259:1461–1467

    PubMed  CAS  Google Scholar 

  • Schaack J, Söll D (1985) Transcription of aDrosophila tRNAArg gene in yeast extract: 5′ flanking sequence dependence for transcription in a heterologous system. Nucleic Acids Res 13:2803–2814

    PubMed  CAS  Google Scholar 

  • Segall J, Matsui T, Roeder RG (1980) Multiple factors are required for the accurate transcription of purified genes by RNA polymerase III. J Biol Chem 255:11986–11991

    PubMed  CAS  Google Scholar 

  • Selker EU, Stevens JN, Metzenberg RL (1985) Heterogeneity of 5S RNA in fungal ribosomes. Science 227:1340–1343

    PubMed  CAS  Google Scholar 

  • Selker EU, Yanofsky C, Driftmier K, Metzenberg RL, Alzner-DeWeerd B, RajBhandary UL (1981) Dispersed 5S RNA genes inN. crassa: Structure, expression and evolution. Cell 24:819–828

    Article  PubMed  CAS  Google Scholar 

  • Shastry BS, Ng S-Y, Roeder RG (1982) Multiple factors involved in the transcription of class III genes inXenopus laevis. J Biol Chem 257:12979–12986

    PubMed  CAS  Google Scholar 

  • Shaw K, Olson MV (1984) Effects of altered 5′-flanking sequences on the in vivo expression of aSaccharomyces cerevisiae tRNATyr gene. Mol Cell Biol 4:657–665

    PubMed  CAS  Google Scholar 

  • Sprague KU, Larson D, Morton D (1980) 5′ Flanking sequence signals are required for activity of silkworm alanine tRNA genes in homologusin vitro transcription systems. Cell 22:171–178

    Article  PubMed  CAS  Google Scholar 

  • Tyler BM, Giles NH (1984) Accurate transcription of homologous 5S rRNA and tRNA genes and splicing of tRNAin vitro by soluble extracts ofNeurospora. Nucleic Acids Res 12:5737–5755

    PubMed  CAS  Google Scholar 

  • Wilson EJ, Larson D, Young LS, Sprague KU (1985) A large region controls tRNA gene transcription. J Mol Biol 183:153–163

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by W. Gajewski

Rights and permissions

Reprints and permissions

About this article

Cite this article

Selker, E.U., Morzycka-Wroblewska, E., Stevens, J.N. et al. An upstream signal is required for in vitro transcription ofNeurospora 5S RNA genes. Molec. Gen. Genet. 205, 189–192 (1986). https://doi.org/10.1007/BF02428052

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02428052

Key words

Navigation