Skip to main content
Log in

Mutant EF-Tu increases missense error in vitro

  • Short Communication
  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Summary

We have studied the consequences of mutational alteration in the structure of EF-Tu on the missense errors and proofreading activity of bacterial ribosomes in vitro. Our data show that the EF-Tu Bo mutant form of EF-Tu (van der Meide et al. 1983a) is inactive in polypeptide synthesis on the ribosome, even though it binds aminoacyl-tRNA. A second mutant form, EF-Tu Ar (van der Meide et al. 1983a), is active in polypeptide synthesis but supports a much higher messense incorporation with either leucine isoacceptor 2 or leucine isoacceptor 4 in the in vitro system. Further analysis of the kinetic basis of this enhanced missense frequency revealed that the mutation responsible for the alteration in EF-Tu Ar increases the errors at both the proofreading step and the initial selection. In this respect the effect of this particular mutation is similar to the mode of action of the antibiotic kanamycin (Jelenc and Kurland 1984).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Andersson DI, Bohman K, Isaksson LA, Kurland CG (1982) Translation rates and misreading characteristics ofrpsD mutants inEscherichia coli. Mol Gen Genet 187:467–472

    Article  PubMed  CAS  Google Scholar 

  • Andersson DI, Kurland CG (1983) Ram ribosomes are defective proofreaders. Mol Gen Genet 191:378–381

    Article  PubMed  CAS  Google Scholar 

  • Andersson DI, Andersson SGE, Kurland CG (1986) Functional interactions between mutated forms of ribosomal protein S4, S5 and S12. Biochimie (in press)

  • Arai KI, Kawakita M, Kaziro Y (1972) Studies on polypeptide elongation factors fromEscherichia coli. J Biol Chem 247:7029–7037

    PubMed  CAS  Google Scholar 

  • Bohman K, Ruusala T, Jelenc PC, Kurland CG (1984) Kinetic impairment of restrictive streptomycin resistant bacteria. Mol Genet 198:90–99

    Article  CAS  Google Scholar 

  • Chinali G, Wolf H, Permeggiani A (1977) Effect of kirromycin on elongation factor Tu. Eur J Biochem 75:55–65

    Article  PubMed  CAS  Google Scholar 

  • Diaz I, Ehrenberg M, Kurland CG (1986) How do combinations ofrpsL andmiaA generate streptomycin dependence. Mol Gen Genet 202:207–211

    Article  PubMed  CAS  Google Scholar 

  • Ehrenberg M, Kurland CG, Ruusala T (1986) Counting cycles of EF-Tu to measure proofreading in translation. Biochimie 68:261–273

    PubMed  CAS  Google Scholar 

  • Gorini L (1971) Ribosomal discrimination of tRNAs. Nature New Biol 234:261–264

    PubMed  CAS  Google Scholar 

  • Hopfield JJ (1974) Kinetic proofreading: A new mechanism for reducing errors in biosynthetic processes requiring high specificity. Proc Natl Acad Sci USA 71:4135–4139

    Article  PubMed  CAS  Google Scholar 

  • Hughes D (1984) External suppressors of −1 and +1 frameshift mutations: a genetic analysis in bacteria: PhD Thesis, Dublin University

  • Jaskunas SR, Fallon AM, Nomura M (1977) Identification and organization of ribosomal protein genes ofEscherichia coli carried by λfus2 transducing phage. J Biol Chem 252:7323–7336

    PubMed  CAS  Google Scholar 

  • Jelenc PC (1980) Rapid purification of highly active ribosomes fromEscherichia coli. Anal Biochem 105:369–374

    Article  PubMed  CAS  Google Scholar 

  • Jelenc PC, Kurland CG (1979) Nucleoside triphosphate regeneration decreases the frequency of translation errors. Proc Natl Acad Sci USA 76:3174–3178

    Article  PubMed  CAS  Google Scholar 

  • Jelenc PC, Kurland CG (1984) Multiple effects of kanamycin on translational accuracy. Mol Gen Genet 194:195–199

    Article  PubMed  CAS  Google Scholar 

  • Kirsebom L, Isaksson LA (1985) Involvement of ribosomal protein L7/L12 in control of translational accuracy. Proc Natl Acad Sci USA 82:717–721

    Article  PubMed  CAS  Google Scholar 

  • Kirsebom L (1985) Mutations in ribosomal protein L7/L12: Structural and functional studies. PhD Thesis, Uppsala University

  • van de Klundert JAM, den Turk E, Borman AH, van der Meide PH, Bosch L (1977) Isolation and characterization of a mocimycin resistant mutant ofEscherichia coli with an altered elongation factor EF-Tu. FEBS Lett 81:303–307

    Article  PubMed  Google Scholar 

  • Lebermann R, Antonsson B, Giovanelli R, Schuman R, Wittinghofer A (1980) A simplified procedure for the isolation of bacterial polypeptide elongation factor EF-Tu. Anal Biochem 104:29–36

    Article  Google Scholar 

  • Lee JS, An G, Friesen JD, Fiil NP (1981) Location of thetuf B promotor ofE. coli: cotranscription oftuf B with four transfer RNA genes. Cell 25:251–258

    Article  PubMed  CAS  Google Scholar 

  • van der Meide PH, Vijgenboom E, Talens A, Bosch L (1983a) The role of EF-Tu in the expression oftuf A andtuf B genes. Eur J Biochem 130:397–407

    Article  PubMed  Google Scholar 

  • van der Meide PH, Kastelein RA, Vijgenboom E, Bosch L (1983b)Tuf gene dosage effects on the intracellular concentration of EF-TuB. Eur J Biochem 130:409–417

    Article  PubMed  Google Scholar 

  • Miyajima A, Shibuya M, Kuchino Y, Kaziro Y (1981) Transcription of theE. coli tuf B gene: cotranscription with four tRNA genes and inhibition by guanosine-5′-diphosphate-3′-disphosphate. Mol Gen Genet 183:13–19

    Article  PubMed  CAS  Google Scholar 

  • Ninio J (1975) Kinetic amplification of enzyme discrimination. Biochimie 57:587–595

    PubMed  CAS  Google Scholar 

  • Pingoud A, Urbanke C, Krauss G, Peters F, Maass G (1977) Ternary complex formation between elongation factor Tu, GTP and aminoacyl-tRNA: an equilibrium study. Eur J Biochem 78:403–409

    Article  PubMed  CAS  Google Scholar 

  • Ruusala T, Ehrenberg M, Kurland CG (1982) Is there proofreading during polypeptide synthesis? EMBO J 1:741–745

    PubMed  CAS  Google Scholar 

  • Ruusala T, Andersson DI, Ehrenberg M, Kurland CG (1984) Hyper-accurate ribosomes inhibit growth. EMBO J 3:2575–2580

    PubMed  CAS  Google Scholar 

  • Smith JD (1979) Suppressor tRNAs in prokaryotes. Nonsense mutations and tRNA suppressors. Academic Pres, London, pp 109–125

    Google Scholar 

  • Vijgenboom E, Vink T, Kraal B, Bosch L (1985) Mutants of the elongation factor EF-Tu, a new class of nonsense suppressors. EMBO J 4:1049–1052

    PubMed  CAS  Google Scholar 

  • Wagner EGH, Kurland CG (1980)Escherichia coli elongation factor G blocks stringent factor. Biochemistry 19:1234–1240

    Article  PubMed  CAS  Google Scholar 

  • Wagner EGH, Jelenc PC, Ehrenberg M, Kurland CG (1983) Rate of elongation of polyphenylalanine in vitro. Eur J Biochem 122:193–197

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by A. Böck

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tapio, S., Kurland, C.G. Mutant EF-Tu increases missense error in vitro. Molec. Gen. Genet. 205, 186–188 (1986). https://doi.org/10.1007/BF02428051

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02428051

Key words

Navigation