Skip to main content
Log in

Photoelastic stress freezing analysis of total shoulder replacement systems

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

Photoelastic stress freezing analyses in the orthopaedic literature have, in the past, been limited to studies where bone-on-bone, bone-on-metal or ultra-high molecular weight polyethylene (UHMWPE)-on-metal constructs are modeled. In these cases photoelastic plastics are used to simulate either bone or UHMWPE as it interacts with a metal implant. In joints such as the shoulder, a UHMWPE component is often cemented directly into the scapula's glenoid concavity using polymethylmethacrylate (PMMA). While a photoelastic material can be used to simulate bone with proper load scaling, UHMWPE and PMMA have very different mechanical properties at elevated stress freezing temperatures as compared within vivo body temperature. In this study, materials were identified such that proper scaling of elastic properties at elevated temperatures was utilized to simulate the metal-UHMWPE-PMMA-bone construct. Stresses on orthogonal planes throughout the glenoid were compared for two different UHMWPE component anchoring geometries (keeled and pegged). High stresses were found at the neck of the glenoid and also at the component-bone interface beneath simulated PMMA inclusions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Maurel, N., Diop, A., Grimberg, J., andElise, S.In Vivo Biomechanical Analysis of Glenoids Before and After Implantation of Prosthetic Components.”J. Biomech.,35 (8),1071–1080 (2002).

    Article  Google Scholar 

  2. Torchia, M.E., Cofield, R.H., andSettergren, C.R., “Total Shoulder Arthroplasty with the Neer Prosthesis: Long-term Results,”J. Shoulder Elbow Surg.,6 (6),495–505 (1997).

    Article  Google Scholar 

  3. Warner, J.J., Bowen, M.K., Deng, X.H., Hannafin, J.A., Arnoszky, S.P. andWarren, R.F.Articular Contact Patterns of the Normal Glenohumeral Joint,”J. Shoulder Elbow Surg.,7 (4)381–388 (1998).

    Article  Google Scholar 

  4. Flatow, E.L., Ateshian, G.A., Soslowsky, L.J., Pawluk, R.J., Grelsamer, R.P., Mow, V.C., andBigliani, L.U., “Computer Simulation of Glenohumeral and Patellofemoral Subluxation. Estimating Pathological Articular Contact,”Clin. Orthop.,306,28–33 (1994).

    Google Scholar 

  5. Soslowsky, L.J., Flatow, E.L., Bigliani, L.U., andMow, V.C., “Articular Geometry of the Glenohumeral Joint,”Clin Orthop.,285,181–190 (1992).

    Google Scholar 

  6. Soslowsky, L.J., Flatow, E.L., Bigliani, L.U., Pawluk, R.J., Ateshian, G.A., andMow, V.C., “Quantitation of In Situ Contact Areas at the Glenohumeral Joint: A Biomechanical Study,”J. Orthop. Res.,10, (4),524–534 (1992).

    Article  Google Scholar 

  7. Korduna, A.R., Williams, G.R., Ianotti, J.P., andWilliams, J.L., “Total Shoulder Arthroplasty Biomechanics: A Study of the Forces and Strains at the Glenoid Component,”J. Biomech. Eng.,120,92–99 (1998).

    Google Scholar 

  8. Couteau, B., Mansat, P., Estivalezes, E., Darmana, R., Mansat, M., andEgan, J., “Finite Element Analysis of the Mechanical Behavior of a Scapula with a Glenoid Prosthesis,”Clin. Biomech.,16,566–572 (2001).

    Article  Google Scholar 

  9. Orr, E., Carter, D.R., andSchurman, D.J., “Stress Analysis of Glenoid Component Designs,”Clin. Orthop.,232,217–224 (1988).

    Google Scholar 

  10. Fridman, R.J., LaBerge, M., Dooley, R.L., andO'Hara, A.L., “Finite Element Modeling of the Glenoid Component: Effect of Design Parameters on Stress Distribution,”J. Shoulder Elbow Surg.,1,261–270 (1992).

    Article  Google Scholar 

  11. Lacroix, D., andPrendergast, P.J., “Stress Analysis of Glenoid Component Designs for Shoulder Arthroplasty,”Proc. Inst. Mech. Eng. H.,211,467–474 (1997).

    Article  Google Scholar 

  12. Stone, K.D., Grabowski, J.J., Cofield, R.H., Morrey, B.F., andAn, K.N., “Stress Analysis of Glenoid Components in Total Shoulder Arthroplasty,”J. Shoulder Elbow Surg.,8 (2),151–158 (1999).

    Article  Google Scholar 

  13. Lacroix, D., Murphy, L.A., andPrendergast, P.J., “Three-Dimensional Finite Element Analysis of Glenoid Replacement Prostheses: A Comparison of Keeled and Pegged Anchorage Systems,”J. Biomech. Eng.,122,430–436 (2000).

    Article  Google Scholar 

  14. Murphy, L.A., Prendergast, P.J., andResch, H., “Structural Analysis of an Offset-keel Design Glenoid Component Compared with a Center-Keel Design,”J. Shoulder Elbow Surg.,10 (6),568–579 (2001).

    Article  Google Scholar 

  15. Ries, M.D., Salehi, A., andShea, J., “Photoelastic Analysis of Stresses Produced by Different Acetabular Cups,”Clin Orthop., 369, 165–174 (1999).

    Article  Google Scholar 

  16. Kihara, T., Unno, M., Kitada, C., Kubo, H., andNagata, R., “Three-Dimensional Stress Distribution Measurement in a Madel of the Human Ankle Joint by Scattered-Light Polarizer Photoelasticity,”Appl. Opt.,24 (20),3363–3367 (1987).

    Google Scholar 

  17. Ramesh, K., Digital Photoelasticity: Advanced Techniques and Applications, Springer-Verlag, New York (2001).

    Google Scholar 

  18. Ihn, J., Ahn, M., andKim, D., “Pholoelastic Analysis of Stress Distribution on the Tibiofemoral Joint After Meniscectomy,”Orthopaedics,15 (12),1445–1450 (1992)

    Google Scholar 

  19. Ziada, H.M., Benington, I.C., andOrr, J.F., “Photolastic Stress Analysis in Resin Bonded Bridge Design,”Eur. J. Prosthodont. Rest. Dent. 3 (5),217–222 (1995).

    Google Scholar 

  20. Ziada, H.M., andOrr, J.F., “Photoelastic Stress Analysis in Peforated (Rochette) Resin Bonded Bridge Design,”J. Oral Rehab.,27 (5),387–393 (2000).

    Article  Google Scholar 

  21. Frich, L.H., Jensen, N.C., Anders, O., Pedersen, C.M., Søjbjerg, J.O., andDalstra, M., “Bone Strength and Material Properties of the Glenoid,”J. Shoulder Elbow Surg.,6 (2),97–104 (1997).

    Article  Google Scholar 

  22. Mansat, P., Barea, C., Hobatho, M.C., Darmana, R., andMansat, M., “Anatomic Variation of the Mechanical Properties of the Glenoid,”J. Shoulder Elbow Surg.,7 (2),109–115 (1998).

    Article  Google Scholar 

  23. Van der Helm, F.C.T., “Analysis of the Kinematic and Dynamic Behavior of the Shoulder Mechanism,”J. Biomech.,27 (5),527–550 (1994).

    Article  Google Scholar 

  24. Kessel, L. andBayley, I., Clinical Disorders of the Shoulder, 2nd edition,Churchill Livingstone, Edinburgh (1986).

    Google Scholar 

  25. Post, M., Joblon, M., Miller, H., andSingh, M., “Constrained Total Shoulder Joint Replacement: A Critical Review,”Clin Orthop.,144,135–150 (1979).

    Google Scholar 

  26. Buechel, F.F., Pappas, M.J., andDePalma, A.F., “Floating Socket' Total Shoulder Replacement: Anatomical, Biomechanical and Surgical Rationale,”J. Biomed. Mater, Res.,12,89–114 (1978).

    Article  Google Scholar 

  27. Anglin, C., Wyss, U.P., andPichora, D.R., “Glenohumeral Contact Forces,”Proc. Inst. Mech. Eng. H. 214,635–644 (2000).

    Google Scholar 

  28. Ramesh, K., andPathak, P.M., “Role of Photoelasticity in Evolving Discretization Schemes for FE Analysis,”Experimental Techniques,23 (4),36–38 (1999).

    Google Scholar 

  29. Pathak, P.M., andRamesh, K., “Validation of Finite Element Modeling Through Photoelastic Fringe Contours,”Commun. Numer. Methods Eng.,15,229–238 (1999).

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peindl, R.D., Harrow, M.E., Connor, P.M. et al. Photoelastic stress freezing analysis of total shoulder replacement systems. Experimental Mechanics 44, 228–234 (2004). https://doi.org/10.1007/BF02427887

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02427887

Key Words

Navigation